About the Project

Euler sums

AdvancedHelp

(0.005 seconds)

21—30 of 202 matching pages

21: 15.8 Transformations of Variable
β–Ί
15.8.8 𝐅 ⁑ ( a , a + m c ; z ) = ( z ) a Ξ“ ⁑ ( a + m ) ⁒ k = 0 m 1 ( a ) k ⁒ ( m k 1 ) ! k ! ⁒ Ξ“ ⁑ ( c a k ) ⁒ z k + ( z ) a Ξ“ ⁑ ( a ) ⁒ k = 0 ( a + m ) k k ! ⁒ ( k + m ) ! ⁒ Ξ“ ⁑ ( c a k m ) ⁒ ( 1 ) k ⁒ z k m ⁒ ( ln ⁑ ( z ) + ψ ⁑ ( k + 1 ) + ψ ⁑ ( k + m + 1 ) ψ ⁑ ( a + k + m ) ψ ⁑ ( c a k m ) ) , | z | > 1 , | ph ⁑ ( z ) | < Ο€ ,
β–Ί
15.8.9 𝐅 ⁑ ( a , a + m c ; z ) = ( 1 z ) a Ξ“ ⁑ ( a + m ) ⁒ Ξ“ ⁑ ( c a ) ⁒ k = 0 m 1 ( a ) k ⁒ ( c a m ) k ⁒ ( m k 1 ) ! k ! ⁒ ( z 1 ) k + ( 1 ) m ⁒ ( 1 z ) a m Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c a m ) ⁒ k = 0 ( a + m ) k ⁒ ( c a ) k k ! ⁒ ( k + m ) ! ⁒ ( 1 z ) k ⁒ ( ln ⁑ ( 1 z ) + ψ ⁑ ( k + 1 ) + ψ ⁑ ( k + m + 1 ) ψ ⁑ ( a + k + m ) ψ ⁑ ( c a + k ) ) , | z 1 | > 1 , | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.8.10 𝐅 ⁑ ( a , b a + b + m ; z ) = 1 Ξ“ ⁑ ( a + m ) ⁒ Ξ“ ⁑ ( b + m ) ⁒ k = 0 m 1 ( a ) k ⁒ ( b ) k ⁒ ( m k 1 ) ! k ! ⁒ ( z 1 ) k ( z 1 ) m Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ k = 0 ( a + m ) k ⁒ ( b + m ) k k ! ⁒ ( k + m ) ! ⁒ ( 1 z ) k ⁒ ( ln ⁑ ( 1 z ) ψ ⁑ ( k + 1 ) ψ ⁑ ( k + m + 1 ) + ψ ⁑ ( a + k + m ) + ψ ⁑ ( b + k + m ) ) , | z 1 | < 1 , | ph ⁑ ( 1 z ) | < Ο€ ,
β–Ί
15.8.11 𝐅 ⁑ ( a , b a + b + m ; z ) = z a Ξ“ ⁑ ( a + m ) ⁒ k = 0 m 1 ( a ) k ⁒ ( m k 1 ) ! k ! ⁒ Ξ“ ⁑ ( b + m k ) ⁒ ( 1 1 z ) k z a Ξ“ ⁑ ( a ) ⁒ k = 0 ( a + m ) k k ! ⁒ ( k + m ) ! ⁒ Ξ“ ⁑ ( b k ) ⁒ ( 1 ) k ⁒ ( 1 1 z ) k + m ⁒ ( ln ⁑ ( 1 z z ) ψ ⁑ ( k + 1 ) ψ ⁑ ( k + m + 1 ) + ψ ⁑ ( a + k + m ) + ψ ⁑ ( b k ) ) , ⁑ z > 1 2 , | ph ⁑ z | < Ο€ , | ph ⁑ ( 1 z ) | < Ο€ .
22: 24.6 Explicit Formulas
β–Ί
24.6.4 E 2 ⁒ n = k = 1 n 1 2 k 1 ⁒ j = 1 k ( 1 ) j ⁒ ( 2 ⁒ k k j ) ⁒ j 2 ⁒ n ,
β–Ί
24.6.6 E 2 ⁒ n = k = 1 2 ⁒ n ( 1 ) k 2 k 1 ⁒ ( 2 ⁒ n + 1 k + 1 ) ⁒ j = 0 1 2 ⁒ k 1 2 ( k j ) ⁒ ( k 2 ⁒ j ) 2 ⁒ n .
β–Ί
24.6.8 E n ⁑ ( x ) = 1 2 n ⁒ k = 1 n + 1 j = 0 k 1 ( 1 ) j ⁒ ( n + 1 k ) ⁒ ( x + j ) n .
β–Ί
24.6.10 E n = 1 2 n ⁒ k = 1 n + 1 ( n + 1 k ) ⁒ j = 0 k 1 ( 1 ) j ⁒ ( 2 ⁒ j + 1 ) n .
β–Ί
24.6.12 E 2 ⁒ n = k = 0 2 ⁒ n 1 2 k ⁒ j = 0 k ( 1 ) j ⁒ ( k j ) ⁒ ( 1 + 2 ⁒ j ) 2 ⁒ n .
23: 27.2 Functions
β–Ί
27.2.6 Ο• k ⁑ ( n ) = ( m , n ) = 1 m k ,
β–Ί
27.2.7 Ο• ⁑ ( n ) = Ο• 0 ⁑ ( n ) .
β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . …
24: 16.13 Appell Functions
β–Ί
16.13.1 F 1 ⁑ ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m + n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , max ⁑ ( | x | , | y | ) < 1 ,
β–Ί
16.13.2 F 2 ⁑ ( α ; β , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m ⁒ ( γ ) n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , | x | + | y | < 1 ,
β–Ί
16.13.3 F 3 ⁑ ( α , α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m ⁒ ( α ) n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m + n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , max ⁑ ( | x | , | y | ) < 1 ,
β–Ί
16.13.4 F 4 ⁑ ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m + n ( γ ) m ⁒ ( γ ) n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , | x | + | y | < 1 .
25: 31.15 Stieltjes Polynomials
β–Ί
31.15.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) ⁒ d w d z + Φ ⁑ ( z ) j = 1 N ( z a j ) ⁒ w = 0 ,
β–Ί
31.15.2 j = 1 N Ξ³ j / 2 z k a j + j = 1 j k n 1 z k z j = 0 , k = 1 , 2 , , n .
β–Ί
31.15.3 j = 1 N Ξ³ j t k a j + j = 1 n 1 1 t k z j = 0 .
β–Ί
31.15.7 q j = γ j ⁒ k = 1 n 1 z k a j , j = 1 , 2 , , N .
26: 30.8 Expansions in Series of Ferrers Functions
β–Ί
30.8.1 π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) = k = R ( 1 ) k ⁒ a n , k m ⁑ ( Ξ³ 2 ) ⁒ 𝖯 n + 2 ⁒ k m ⁑ ( x ) ,
β–Ί
30.8.5 k = R a n , k m ⁑ ( γ 2 ) ⁒ a n , k m ⁑ ( γ 2 ) ⁒ 1 2 ⁒ n + 4 ⁒ k + 1 = 1 2 ⁒ n + 1 ,
β–Ί
30.8.9 π–°π—Œ n m ⁑ ( x , Ξ³ 2 ) = k = N 1 ( 1 ) k ⁒ a n , k m ⁑ ( Ξ³ 2 ) ⁒ 𝖯 n + 2 ⁒ k m ⁑ ( x ) + k = N ( 1 ) k ⁒ a n , k m ⁑ ( Ξ³ 2 ) ⁒ 𝖰 n + 2 ⁒ k m ⁑ ( x ) ,
27: 31.14 General Fuchsian Equation
β–Ί
31.14.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) ⁒ d w d z + ( j = 1 N q j z a j ) ⁒ w = 0 , j = 1 N q j = 0 .
β–Ί
Ξ± + Ξ² + 1 = j = 1 N Ξ³ j ,
β–Ί
31.14.4 d 2 W d z 2 = j = 1 N ( γ ~ j ( z a j ) 2 + q ~ j z a j ) ⁒ W , j = 1 N q ~ j = 0 ,
β–Ί
q ~ j = 1 2 ⁒ k = 1 k j N γ j ⁒ γ k a j a k q j ,
28: 13.2 Definitions and Basic Properties
β–Ί
13.2.3 𝐌 ⁑ ( a , b , z ) = s = 0 ( a ) s Ξ“ ⁑ ( b + s ) ⁒ s ! ⁒ z s ,
β–Ί
13.2.9 U ⁑ ( a , n + 1 , z ) = ( 1 ) n + 1 n ! ⁒ Ξ“ ⁑ ( a n ) ⁒ k = 0 ( a ) k ( n + 1 ) k ⁒ k ! ⁒ z k ⁒ ( ln ⁑ z + ψ ⁑ ( a + k ) ψ ⁑ ( 1 + k ) ψ ⁑ ( n + k + 1 ) ) + 1 Ξ“ ⁑ ( a ) ⁒ k = 1 n ( k 1 ) ! ⁒ ( 1 a + k ) n k ( n k ) ! ⁒ z k .
29: 27.14 Unrestricted Partitions
β–Ί
27.14.3 1 f ⁑ ( x ) = n = 0 p ⁑ ( n ) ⁒ x n ,
β–Ί
27.14.4 f ⁑ ( x ) = 1 x x 2 + x 5 + x 7 x 12 x 15 + β‹― = 1 + k = 1 ( 1 ) k ⁒ ( x Ο‰ ⁑ ( k ) + x Ο‰ ⁑ ( k ) ) ,
β–Ί
27.14.15 5 ⁒ ( f ⁑ ( x 5 ) ) 5 ( f ⁑ ( x ) ) 6 = n = 0 p ⁑ ( 5 ⁒ n + 4 ) ⁒ x n
30: 8.15 Sums
β–Ί
8.15.1 γ ⁑ ( a , λ ⁒ x ) = λ a ⁒ k = 0 γ ⁑ ( a + k , x ) ⁒ ( 1 λ ) k k ! .
β–Ί
8.15.2 a ⁒ k = 1 ( e 2 ⁒ Ο€ ⁒ i ⁒ k ⁒ ( z + h ) ( 2 ⁒ Ο€ ⁒ i ⁒ k ) a + 1 ⁒ Ξ“ ⁑ ( a , 2 ⁒ Ο€ ⁒ i ⁒ k ⁒ z ) + e 2 ⁒ Ο€ ⁒ i ⁒ k ⁒ ( z + h ) ( 2 ⁒ Ο€ ⁒ i ⁒ k ) a + 1 ⁒ Ξ“ ⁑ ( a , 2 ⁒ Ο€ ⁒ i ⁒ k ⁒ z ) ) = ΞΆ ⁑ ( a , z + h ) + z a + 1 a + 1 + ( h 1 2 ) ⁒ z a , h [ 0 , 1 ] .