About the Project

Euler%E2%80%93Maclaurin%20formula

AdvancedHelp

(0.003 seconds)

11—20 of 562 matching pages

11: 5.8 Infinite Products
5.8.1 Γ ( z ) = lim k k ! k z z ( z + 1 ) ( z + k ) , z 0 , 1 , 2 , ,
5.8.2 1 Γ ( z ) = z e γ z k = 1 ( 1 + z k ) e z / k ,
5.8.3 | Γ ( x ) Γ ( x + i y ) | 2 = k = 0 ( 1 + y 2 ( x + k ) 2 ) , x 0 , 1 , .
5.8.5 k = 0 ( a 1 + k ) ( a 2 + k ) ( a m + k ) ( b 1 + k ) ( b 2 + k ) ( b m + k ) = Γ ( b 1 ) Γ ( b 2 ) Γ ( b m ) Γ ( a 1 ) Γ ( a 2 ) Γ ( a m ) ,
12: 10.31 Power Series
where ψ ( x ) = Γ ( x ) / Γ ( x ) 5.2(i)). …
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
13: 5.7 Series Expansions
§5.7(i) Maclaurin and Taylor Series
where c 1 = 1 , c 2 = γ , and …
5.7.3 ln Γ ( 1 + z ) = ln ( 1 + z ) + z ( 1 γ ) + k = 2 ( 1 ) k ( ζ ( k ) 1 ) z k k , | z | < 2 .
For 20D numerical values of the coefficients of the Maclaurin series for Γ ( z + 3 ) see Luke (1969b, p. 299). …
5.7.6 ψ ( z ) = γ 1 z + k = 1 z k ( k + z ) = γ + k = 0 ( 1 k + 1 1 k + z ) ,
14: 24.6 Explicit Formulas
§24.6 Explicit Formulas
24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
24.6.6 E 2 n = k = 1 2 n ( 1 ) k 2 k 1 ( 2 n + 1 k + 1 ) j = 0 1 2 k 1 2 ( k j ) ( k 2 j ) 2 n .
24.6.7 B n ( x ) = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) ( x + j ) n ,
24.6.12 E 2 n = k = 0 2 n 1 2 k j = 0 k ( 1 ) j ( k j ) ( 1 + 2 j ) 2 n .
15: Bibliography D
  • H. Delange (1988) On the real roots of Euler polynomials. Monatsh. Math. 106 (2), pp. 115–138.
  • K. Dilcher (1987a) Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials. J. Approx. Theory 49 (4), pp. 321–330.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • 16: 25.16 Mathematical Applications
    §25.16(ii) Euler Sums
    Euler sums have the form … H ( s ) is the special case H ( s , 1 ) of the function …which satisfies the reciprocity law …when both H ( s , z ) and H ( z , s ) are finite. …
    17: 31.3 Basic Solutions
    H ( a , q ; α , β , γ , δ ; z ) denotes the solution of (31.2.1) that corresponds to the exponent 0 at z = 0 and assumes the value 1 there. If the other exponent is not a positive integer, that is, if γ 0 , 1 , 2 , , then from §2.7(i) it follows that H ( a , q ; α , β , γ , δ ; z ) exists, is analytic in the disk | z | < 1 , and has the Maclaurin expansion … Similarly, if γ 1 , 2 , 3 , , then the solution of (31.2.1) that corresponds to the exponent 1 γ at z = 0 is … When γ , linearly independent solutions can be constructed as in §2.7(i). … For example, H ( a , q ; α , β , γ , δ ; z ) is equal to …
    18: 24.5 Recurrence Relations
    §24.5 Recurrence Relations
    24.5.2 k = 0 n ( n k ) E k ( x ) + E n ( x ) = 2 x n , n = 1 , 2 , .
    24.5.4 k = 0 n ( 2 n 2 k ) E 2 k = 0 , n = 1 , 2 , ,
    24.5.5 k = 0 n ( n k ) 2 k E n k + E n = 2 .
    §24.5(iii) Inversion Formulas
    19: 30.11 Radial Spheroidal Wave Functions
    Then solutions of (30.2.1) with μ = m and λ = λ n m ( γ 2 ) are given by …Here a n , k m ( γ 2 ) is defined by (30.8.2) and (30.8.6), and …
    Connection Formulas
    For fixed γ , as z in the sector | ph z | π δ ( < π ), … where …
    20: 5.4 Special Values and Extrema
    Γ ( 1 ) = 1 ,
    n ! = Γ ( n + 1 ) .
    (The second line of Formula (5.4.2) also applies when n = 1 .) …
    5.4.11 Γ ( 1 ) = γ .
    ψ ( 1 ) = γ ,