About the Project

Euler homogeneity relation

AdvancedHelp

(0.001 seconds)

4 matching pages

1: 19.18 Derivatives and Differential Equations
and two similar equations obtained by permuting x , y , z in (19.18.10). More concisely, if v = R a ( 𝐛 ; 𝐳 ) , then each of (19.16.14)–(19.16.18) and (19.16.20)–(19.16.23) satisfies Euler’s homogeneity relation: …
2: 31.14 General Fuchsian Equation
The exponents at the finite singularities a j are { 0 , 1 γ j } and those at are { α , β } , where …The three sets of parameters comprise the singularity parameters a j , the exponent parameters α , β , γ j , and the N 2 free accessory parameters q j . …
Normal Form
γ ~ j = γ j 2 ( γ j 2 1 ) .
An algorithm given in Kovacic (1986) determines if a given (not necessarily Fuchsian) second-order homogeneous linear differential equation with rational coefficients has solutions expressible in finite terms (Liouvillean solutions). …
3: 9.16 Physical Applications
The use of Airy function and related uniform asymptotic techniques to calculate amplitudes of polarized rainbows can be found in Nussenzveig (1992) and Adam (2002). A quite different application is made in the study of the diffraction of sound pulses by a circular cylinder (Friedlander (1958)). … The investigation of the transition between subsonic and supersonic of a two-dimensional gas flow leads to the Euler–Tricomi equation (Landau and Lifshitz (1987)). … An example from quantum mechanics is given in Landau and Lifshitz (1965), in which the exact solution of the Schrödinger equation for the motion of a particle in a homogeneous external field is expressed in terms of Ai ( x ) . …
4: Bibliography M
  • A. J. MacLeod (1993) Chebyshev expansions for modified Struve and related functions. Math. Comp. 60 (202), pp. 735–747.
  • H. Majima, K. Matsumoto, and N. Takayama (2000) Quadratic relations for confluent hypergeometric functions. Tohoku Math. J. (2) 52 (4), pp. 489–513.
  • M. Micu (1968) Recursion relations for the 3 - j symbols. Nuclear Physics A 113 (1), pp. 215–220.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • J. C. P. Miller (1950) On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quart. J. Mech. Appl. Math. 3 (2), pp. 225–235.