About the Project

Dirichlet%20product%20%28or%20convolution%29

AdvancedHelp

(0.002 seconds)

11—20 of 297 matching pages

11: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
β–Ί
26.4.2 ( n 1 + n 2 + β‹― + n k n 1 , n 2 , , n k ) = ( n 1 + n 2 + β‹― + n k ) ! n 1 ! ⁒ n 2 ! ⁒ β‹― ⁒ n k ! = j = 1 k 1 ( n j + n j + 1 + β‹― + n k n j ) .
β–Ί
Table 26.4.1: Multinomials and partitions.
β–Ί β–Ίβ–Ίβ–Ίβ–Ί
n m Ξ» M 1 M 2 M 3
5 2 2 1 , 3 1 10 20 10
5 3 1 2 , 3 1 20 20 10
β–Ί
12: 27.15 Chinese Remainder Theorem
β–ΊThe Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. … β–ΊTheir product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
13: 8 Incomplete Gamma and Related
Functions
14: Bibliography M
β–Ί
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • β–Ί
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • β–Ί
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • β–Ί
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 15: 8.26 Tables
    β–Ί
  • Khamis (1965) tabulates P ⁑ ( a , x ) for a = 0.05 ⁒ ( .05 ) ⁒ 10 ⁒ ( .1 ) ⁒ 20 ⁒ ( .25 ) ⁒ 70 , 0.0001 x 250 to 10D.

  • β–Ί
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ⁒ ( .01 ) ⁒ 2 to 7D; also ( x + n ) ⁒ e x ⁒ E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ⁒ ( .01 ) ⁒ 0.1 ⁒ ( .05 ) ⁒ 0.5 to 6S.

  • β–Ί
  • Pagurova (1961) tabulates E n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 ⁒ ( .01 ) ⁒ 2 ⁒ ( .1 ) ⁒ 10 to 4-9S; e x ⁒ E n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 10 , x = 10 ⁒ ( .1 ) ⁒ 20 to 7D; e x ⁒ E p ⁑ ( x ) for p = 0 ⁒ ( .1 ) ⁒ 1 , x = 0.01 ⁒ ( .01 ) ⁒ 7 ⁒ ( .05 ) ⁒ 12 ⁒ ( .1 ) ⁒ 20 to 7S or 7D.

  • β–Ί
  • Zhang and Jin (1996, Table 19.1) tabulates E n ⁑ ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ⁒ ( .1 ) ⁒ 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 16: 23 Weierstrass Elliptic and Modular
    Functions
    17: 10.75 Tables
    β–Ί
  • Achenbach (1986) tabulates J 0 ⁑ ( x ) , J 1 ⁑ ( x ) , Y 0 ⁑ ( x ) , Y 1 ⁑ ( x ) , x = 0 ⁒ ( .1 ) ⁒ 8 , 20D or 18–20S.

  • β–Ί
  • Makinouchi (1966) tabulates all values of j Ξ½ , m and y Ξ½ , m in the interval ( 0 , 100 ) , with at least 29S. These are for Ξ½ = 0 ⁒ ( 1 ) ⁒ 5 , 10, 20; Ξ½ = 3 2 , 5 2 ; Ξ½ = m / n with m = 1 ⁒ ( 1 ) ⁒ n 1 and n = 3 ⁒ ( 1 ) ⁒ 8 , except for Ξ½ = 1 2 .

  • β–Ί
  • Bickley et al. (1952) tabulates x n ⁒ I n ⁑ ( x ) or e x ⁒ I n ⁑ ( x ) , x n ⁒ K n ⁑ ( x ) or e x ⁒ K n ⁑ ( x ) , n = 2 ⁒ ( 1 ) ⁒ 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ⁑ ( x ) , K n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 or 0.1 ⁒ ( .1 ) ⁒ 20 , 10S.

  • β–Ί
  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ⁑ ( z ) and K n ⁑ ( z ) , for n = 2 ⁒ ( 1 ) ⁒ 20 , 9S.

  • β–Ί
  • Zhang and Jin (1996, p. 322) tabulates ber ⁑ x , ber ⁑ x , bei ⁑ x , bei ⁑ x , ker ⁑ x , ker ⁑ x , kei ⁑ x , kei ⁑ x , x = 0 ⁒ ( 1 ) ⁒ 20 , 7S.

  • 18: Publications
    β–Ί
  • Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005. PDF
  • β–Ί
  • B. V. Saunders and Q. Wang (2006) From B-Spline Mesh Generation to Effective Visualizations for the NIST Digital Library of Mathematical Functions, in Curve and Surface Design, Proceedings of the Sixth International Conference on Curves and Surfaces, Avignon, France June 29–July 5, 2006, pp. 235–243. PDF
  • β–Ί
  • B. Saunders and Q. Wang (2010) Tensor Product B-Spline Mesh Generation for Accurate Surface Visualizations in the NIST Digital Library of Mathematical Functions, in Mathematical Methods for Curves and Surfaces, Proceedings of the 2008 International Conference on Mathematical Methods for Curves and Surfaces (MMCS 2008), Lecture Notes in Computer Science, Vol. 5862, (M. Dæhlen, M. Floater., T. Lyche, J. L. Merrien, K. Mørken, L. L. Schumaker, eds), Springer, Berlin, Heidelberg (2010) pp. 385–393. PDF
  • β–Ί
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF
  • 19: 26.12 Plane Partitions
    β–Ί
    Table 26.12.1: Plane partitions.
    β–Ί β–Ίβ–Ίβ–Ί
    n pp ⁑ ( n ) n pp ⁑ ( n ) n pp ⁑ ( n )
    3 6 20 75278 37 903 79784
    β–Ί
    β–Ί
    26.12.9 ( h = 1 r j = 1 s h + j + t 1 h + j 1 ) 2 ;
    β–Ί
    26.12.10 ( h = 1 r j = 1 s h + j + t 1 h + j 1 ) ⁒ ( h = 1 r + 1 j = 1 s h + j + t 1 h + j 1 ) ;
    β–Ί
    26.12.11 ( h = 1 r + 1 j = 1 s h + j + t 1 h + j 1 ) ⁒ ( h = 1 r j = 1 s + 1 h + j + t 1 h + j 1 ) .
    β–Ί
    26.12.13 h = 1 r j = 1 r h + j + t 1 h + j 1 ;
    20: 36 Integrals with Coalescing Saddles