Dirichlet character
♦
9 matching pages ♦
(0.001 seconds)
9 matching pages
1: 27.8 Dirichlet Characters
§27.8 Dirichlet Characters
… ►
27.8.2
,
…
►If is a character (mod ), so is its complex conjugate .
…
►Every Dirichlet character
(mod ) is a product
…where is a character (mod ) for some induced modulus for , and is the principal character (mod ).
…
2: 27.10 Periodic Number-Theoretic Functions
…
►Examples are the Dirichlet characters (mod ) and the greatest common divisor regarded as a function of .
…
►It is defined by the relation
…
►
27.10.10
…
►
27.10.11
…
►The finite Fourier expansion of a primitive Dirichlet character
has the form
…
3: 25.15 Dirichlet -functions
…
►where is a Dirichlet character
(§27.8).
For the principal character
, is analytic everywhere except for a simple pole at with residue , where is Euler’s totient function (§27.2).
…
►
25.15.7
,
►
25.15.8
.
…
►
25.15.9
…
4: 27.9 Quadratic Characters
§27.9 Quadratic Characters
… ►The Legendre symbol , as a function of , is a Dirichlet character (mod ). … ►The Jacobi symbol is a Dirichlet character (mod ). …5: 24.16 Generalizations
…
►
§24.16(ii) Character Analogs
►Let be a primitive Dirichlet character (see §27.8). Then is called the conductor of . … ►
24.16.11
…
►
24.16.12
…
6: 27.3 Multiplicative Properties
7: 25.19 Tables
…
►
•
Fletcher et al. (1962, §22.1) lists many sources for earlier tables of for both real and complex . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of , and §22.17 lists tables for some Dirichlet -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.
8: 25.11 Hurwitz Zeta Function
9: Bibliography D
…
►
Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire
.
Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
…
►
Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters.
J. Number Theory 25 (1), pp. 72–80.
…
►
Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält.
Abhandlungen der Königlich Preussischen Akademie der
Wissenschaften von 1837, pp. 45–81 (German).
►
Über die Bestimmung der mittleren Werthe in der Zahlentheorie.
Abhandlungen der Königlich Preussischen Akademie der
Wissenschaften von 1849, pp. 69–83 (German).
…