About the Project

Cosines

AdvancedHelp

(0.000 seconds)

11—20 of 287 matching pages

11: 6 Exponential, Logarithmic, Sine, and
Cosine Integrals
Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals
12: 4.28 Definitions and Periodicity
4.28.2 cosh z = e z + e z 2 ,
4.28.3 cosh z ± sinh z = e ± z ,
4.28.9 cos ( i z ) = cosh z ,
The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . The zeros of sinh z and cosh z are z = i k π and z = i ( k + 1 2 ) π , respectively, k .
13: 6.14 Integrals
§6.14(i) Laplace Transforms
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
§6.14(ii) Other Integrals
6.14.5 0 cos t Ci ( t ) d t = 0 sin t si ( t ) d t = 1 4 π ,
6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
14: 6.20 Approximations
  • Hastings (1955) gives several minimax polynomial and rational approximations for E 1 ( x ) + ln x , x e x E 1 ( x ) , and the auxiliary functions f ( x ) and g ( x ) . These are included in Abramowitz and Stegun (1964, Ch. 5).

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke and Wimp (1963) covers Ei ( x ) for x 4 (20D), and Si ( x ) and Ci ( x ) for x 4 (20D).

  • Luke (1969b, pp. 321–322) covers Ein ( x ) and Ein ( x ) for 0 x 8 (the Chebyshev coefficients are given to 20D); E 1 ( x ) for x 5 (20D), and Ei ( x ) for x 8 (15D). Coefficients for the sine and cosine integrals are given on pp. 325–327.

  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function (§13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 15: 4.47 Approximations
    Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . Schonfelder (1980) gives 40D coefficients for sin , cos , tan . … Hart et al. (1968) give ln , exp , sin , cos , tan , cot , arcsin , arccos , arctan , sinh , cosh , tanh , arcsinh , arccosh . … Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
    16: 6.11 Relations to Other Functions
    17: 6.5 Further Interrelations
    §6.5 Further Interrelations
    6.5.4 1 2 ( Ei ( x ) E 1 ( x ) ) = Chi ( x ) = Ci ( i x ) 1 2 π i .
    6.5.6 Ci ( z ) = 1 2 ( E 1 ( i z ) + E 1 ( i z ) ) ,
    18: 4.18 Inequalities
    4.18.3 cos x sin x x 1 , 0 x π ,
    4.18.5 | sinh y | | sin z | cosh y ,
    4.18.6 | sinh y | | cos z | cosh y ,
    4.18.8 | cos z | cosh | z | ,
    | cos z | < 2 ,
    19: 10.64 Integral Representations
    10.64.1 ber n ( x 2 ) = ( 1 ) n π 0 π cos ( x sin t n t ) cosh ( x sin t ) d t ,
    20: 10.12 Generating Function and Associated Series
    cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
    cos ( z cos θ ) = J 0 ( z ) + 2 k = 1 ( 1 ) k J 2 k ( z ) cos ( 2 k θ ) ,
    sin ( z cos θ ) = 2 k = 0 ( 1 ) k J 2 k + 1 ( z ) cos ( ( 2 k + 1 ) θ ) .
    cos z = J 0 ( z ) 2 J 2 ( z ) + 2 J 4 ( z ) 2 J 6 ( z ) + ,
    1 2 z cos z = J 1 ( z ) 9 J 3 ( z ) + 25 J 5 ( z ) 49 J 7 ( z ) + ,