About the Project

Catalan constant

AdvancedHelp

(0.002 seconds)

21—30 of 438 matching pages

21: 8.1 Special Notation
x real variable.
δ arbitrary small positive constant.
Γ ( z ) gamma function (§5.2(i)).
ψ ( z ) Γ ( z ) / Γ ( z ) .
The functions treated in this chapter are the incomplete gamma functions γ ( a , z ) , Γ ( a , z ) , γ ( a , z ) , P ( a , z ) , and Q ( a , z ) ; the incomplete beta functions B x ( a , b ) and I x ( a , b ) ; the generalized exponential integral E p ( z ) ; the generalized sine and cosine integrals si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) . Alternative notations include: Prym’s functions P z ( a ) = γ ( a , z ) , Q z ( a ) = Γ ( a , z ) , Nielsen (1906a, pp. 25–26), Batchelder (1967, p. 63); ( a , z ) ! = γ ( a + 1 , z ) , [ a , z ] ! = Γ ( a + 1 , z ) , Dingle (1973); B ( a , b , x ) = B x ( a , b ) , I ( a , b , x ) = I x ( a , b ) , Magnus et al. (1966); Si ( a , x ) Si ( 1 a , x ) , Ci ( a , x ) Ci ( 1 a , x ) , Luke (1975).
22: 8.7 Series Expansions
8.7.1 γ ( a , z ) = e z k = 0 z k Γ ( a + k + 1 ) = 1 Γ ( a ) k = 0 ( z ) k k ! ( a + k ) .
8.7.2 γ ( a , x + y ) γ ( a , x ) = Γ ( a , x ) Γ ( a , x + y ) = e x x a 1 n = 0 ( 1 a ) n ( x ) n ( 1 e y e n ( y ) ) , | y | < | x | .
8.7.3 Γ ( a , z ) = Γ ( a ) k = 0 ( 1 ) k z a + k k ! ( a + k ) = Γ ( a ) ( 1 z a e z k = 0 z k Γ ( a + k + 1 ) ) , a 0 , 1 , 2 , .
8.7.4 γ ( a , x ) = Γ ( a ) x 1 2 a e x n = 0 e n ( 1 ) x 1 2 n I n + a ( 2 x 1 / 2 ) , a 0 , 1 , 2 , .
For an expansion for γ ( a , i x ) in series of Bessel functions J n ( x ) that converges rapidly when a > 0 and x ( 0 ) is small or moderate in magnitude see Barakat (1961).
23: 30.8 Expansions in Series of Ferrers Functions
Then the set of coefficients a n , k m ( γ 2 ) , k = R , R + 1 , R + 2 , is the solution of the difference equation … The coefficients a n , k m ( γ 2 ) satisfy (30.8.4) for all k when we set a n , k m ( γ 2 ) = 0 for k < N . …For k = N , N + 1 , , R 1 they are determined from (30.8.4) by forward recursion using a n , N 1 m ( γ 2 ) = 0 . The set of coefficients a n , k m ( γ 2 ) , k = N 1 , N 2 , , is the recessive solution of (30.8.4) as k that is normalized by …It should be noted that if the forward recursion (30.8.4) beginning with f N 1 = 0 , f N = 1 leads to f R = 0 , then a n , k m ( γ 2 ) is undefined for n < R and 𝖰𝗌 n m ( x , γ 2 ) does not exist. …
24: 5.3 Graphics
See accompanying text
Figure 5.3.1: Γ ( x ) and 1 / Γ ( x ) . x 0 = 1.46 , Γ ( x 0 ) = 0.88 ; see §5.4(iii). Magnify
See accompanying text
Figure 5.3.2: ln Γ ( x ) . … Magnify
See accompanying text
Figure 5.3.4: | Γ ( x + i y ) | . Magnify 3D Help
See accompanying text
Figure 5.3.5: 1 / | Γ ( x + i y ) | . Magnify 3D Help
25: 16.13 Appell Functions
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 ,
16.13.3 F 3 ( α , α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m ( α ) n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
Here and elsewhere it is assumed that neither of the bottom parameters γ and γ is a nonpositive integer. …
26: 5.1 Special Notation
j , m , n nonnegative integers.
δ arbitrary small positive constant.
γ Euler’s constant5.2(ii)).
The main functions treated in this chapter are the gamma function Γ ( z ) , the psi function (or digamma function) ψ ( z ) , the beta function B ( a , b ) , and the q -gamma function Γ q ( z ) . The notation Γ ( z ) is due to Legendre. Alternative notations for this function are: Π ( z 1 ) (Gauss) and ( z 1 ) ! . …
27: 5.6 Inequalities
5.6.2 1 Γ ( x ) + 1 Γ ( 1 / x ) 2 ,
5.6.3 1 ( Γ ( x ) ) 2 + 1 ( Γ ( 1 / x ) ) 2 2 ,
5.6.4 x 1 s < Γ ( x + 1 ) Γ ( x + s ) < ( x + 1 ) 1 s , 0 < s < 1 .
5.6.6 | Γ ( x + i y ) | | Γ ( x ) | ,
5.6.8 | Γ ( z + a ) Γ ( z + b ) | 1 | z | b a .
28: 8.3 Graphics
See accompanying text
Figure 8.3.1: Γ ( a , x ) , a = 0. … Magnify
See accompanying text
Figure 8.3.2: γ ( a , x ) , a = 0. … Magnify
See accompanying text
Figure 8.3.3: γ ( a , x ) , a = 1, 2, 2. … Magnify
Some monotonicity properties of γ ( a , x ) and Γ ( a , x ) in the four quadrants of the ( a , x )-plane in Figure 8.3.6 are given in Erdélyi et al. (1953b, §9.6). …
See accompanying text
Figure 8.3.8: Γ ( 0.25 , x + i y ) , 3 x 3 , 3 y 3 . …When x = y = 0 , Γ ( 0.25 , 0 ) = Γ ( 0.25 ) = 3.625 . Magnify 3D Help
29: 16.1 Special Notation
p , q nonnegative integers.
δ arbitrary small positive constant.
The main functions treated in this chapter are the generalized hypergeometric function F q p ( a 1 , , a p b 1 , , b q ; z ) , the Appell (two-variable hypergeometric) functions F 1 ( α ; β , β ; γ ; x , y ) , F 2 ( α ; β , β ; γ , γ ; x , y ) , F 3 ( α , α ; β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , and the Meijer G -function G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) . Alternative notations are F q p ( 𝐚 𝐛 ; z ) , F q p ( a 1 , , a p ; b 1 , , b q ; z ) , and F q p ( 𝐚 ; 𝐛 ; z ) for the generalized hypergeometric function, F 1 ( α , β , β ; γ ; x , y ) , F 2 ( α , β , β ; γ , γ ; x , y ) , F 3 ( α , α , β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , for the Appell functions, and G p , q m , n ( z ; 𝐚 ; 𝐛 ) for the Meijer G -function.
30: 18.25 Wilson Class: Definitions
Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) . …
γ , δ > 1 , β > N + γ .
γ , δ > 1 , β < N δ .
γ , δ < N , β < γ + 1 .
The first four sets imply γ + δ > 2 , and the last four imply γ + δ < 2 N . …