About the Project

Bessel functions and spherical Bessel functions

AdvancedHelp

(0.018 seconds)

11—20 of 61 matching pages

11: 30.10 Series and Integrals
For expansions in products of spherical Bessel functions, see Flammer (1957, Chapter 6).
12: 10.60 Sums
§10.60 Sums
§10.60(i) Addition Theorems
§10.60(ii) Duplication Formulas
For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000).
§10.60(iv) Compendia
13: 10.56 Generating Functions
§10.56 Generating Functions
10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
14: 10.58 Zeros
§10.58 Zeros
15: 6.10 Other Series Expansions
§6.10(ii) Expansions in Series of Spherical Bessel Functions
6.10.4 Si ( z ) = z n = 0 ( 𝗃 n ( 1 2 z ) ) 2 ,
6.10.5 Cin ( z ) = n = 1 a n ( 𝗃 n ( 1 2 z ) ) 2 ,
6.10.6 Ei ( x ) = γ + ln | x | + n = 0 ( 1 ) n ( x a n ) ( 𝗂 n ( 1 ) ( 1 2 x ) ) 2 , x 0 ,
6.10.8 Ein ( z ) = z e z / 2 ( 𝗂 0 ( 1 ) ( 1 2 z ) + n = 1 2 n + 1 n ( n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) ) .
16: 10.74 Methods of Computation
Similar observations apply to the computation of modified Bessel functions, spherical Bessel functions, and Kelvin functions. In the case of the spherical Bessel functions the explicit formulas given in §§10.49(i) and 10.49(ii) are terminating cases of the asymptotic expansions given in §§10.17(i) and 10.40(i) for the Bessel functions and modified Bessel functions. … Similar considerations apply to the spherical Bessel functions and Kelvin functions. …
Spherical Bessel Transform
17: 10.54 Integral Representations
§10.54 Integral Representations
10.54.1 𝗃 n ( z ) = z n 2 n + 1 n ! 0 π cos ( z cos θ ) ( sin θ ) 2 n + 1 d θ .
18: 10.53 Power Series
§10.53 Power Series
10.53.1 𝗃 n ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.2 𝗒 n ( z ) = 1 z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + ( 1 ) n + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
19: 33.9 Expansions in Series of Bessel Functions
§33.9(i) Spherical Bessel Functions
where the function 𝗃 is as in §10.47(ii), a 1 = 0 , a 0 = ( 2 + 1 ) !! C ( η ) , and …
20: 10.77 Software
§10.77(ii) Bessel Functions–Real Argument and Integer or Half-Integer Order (including Spherical Bessel Functions)