About the Project

Bessel equation

AdvancedHelp

(0.006 seconds)

51—60 of 111 matching pages

51: 28.34 Methods of Computation
§28.34(i) Characteristic Exponents
§28.34(ii) Eigenvalues
  • (c)

    Methods described in §3.7(iv) applied to the differential equation (28.2.1) with the conditions (28.2.5) and (28.2.16).

  • §28.34(iii) Floquet Solutions
  • (b)

    Direct numerical integration (§3.7) of the differential equation (28.20.1) for moderate values of the parameters.

  • 52: 10.12 Generating Function and Associated Series
    §10.12 Generating Function and Associated Series
    10.12.4 1 = J 0 ( z ) + 2 J 2 ( z ) + 2 J 4 ( z ) + 2 J 6 ( z ) + ,
    cos z = J 0 ( z ) 2 J 2 ( z ) + 2 J 4 ( z ) 2 J 6 ( z ) + ,
    sin z = 2 J 1 ( z ) 2 J 3 ( z ) + 2 J 5 ( z ) ,
    1 2 z cos z = J 1 ( z ) 9 J 3 ( z ) + 25 J 5 ( z ) 49 J 7 ( z ) + ,
    53: Bibliography V
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • G. Vedeler (1950) A Mathieu equation for ships rolling among waves. I, II. Norske Vid. Selsk. Forh., Trondheim 22 (25–26), pp. 113–123.
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • M. N. Vrahatis, T. N. Grapsa, O. Ragos, and F. A. Zafiropoulos (1997a) On the localization and computation of zeros of Bessel functions. Z. Angew. Math. Mech. 77 (6), pp. 467–475.
  • 54: Bibliography N
  • A. Nakamura (1996) Toda equation and its solutions in special functions. J. Phys. Soc. Japan 65 (6), pp. 1589–1597.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
  • J. N. Newman (1984) Approximations for the Bessel and Struve functions. Math. Comp. 43 (168), pp. 551–556.
  • M. Newman (1967) Solving equations exactly. J. Res. Nat. Bur. Standards Sect. B 71B, pp. 171–179.
  • 55: 36.2 Catastrophes and Canonical Integrals
    36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
    56: 10.39 Relations to Other Functions
    Elementary Functions
    Parabolic Cylinder Functions
    Principal values on each side of these equations correspond. …
    Confluent Hypergeometric Functions
    Generalized Hypergeometric Functions and Hypergeometric Function
    57: 28.8 Asymptotic Expansions for Large q
    §28.8 Asymptotic Expansions for Large q
    Barrett (1981) supplies asymptotic approximations for numerically satisfactory pairs of solutions of both Mathieu’s equation (28.2.1) and the modified Mathieu equation (28.20.1). …The approximants are elementary functions, Airy functions, Bessel functions, and parabolic cylinder functions; compare §2.8. It is stated that corresponding uniform approximations can be obtained for other solutions, including the eigensolutions, of the differential equations by application of the results, but these approximations are not included. … Dunster (1994a) supplies uniform asymptotic approximations for numerically satisfactory pairs of solutions of Mathieu’s equation (28.2.1). …
    58: 18.16 Zeros
    18.16.2 θ n , m ( 1 2 , 1 2 ) = ( m 1 2 ) π n + 1 2 θ n , m ( α , β ) m π n + 1 2 = θ n , m ( 1 2 , 1 2 ) , α , β [ 1 2 , 1 2 ] ,
    Let j α , m be the m th positive zero of the Bessel function J α ( x ) 10.21(i)). Then …
    18.16.12 ( n + 2 ) x n , 1 ( n 1 n 2 + ( n + 2 ) ( α + 1 ) ) 2 1 ,
    18.16.13 ( n + 2 ) x n , n ( n 1 + n 2 + ( n + 2 ) ( α + 1 ) ) 2 1 .
    59: Bibliography H
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • N. J. Hitchin (1995) Poncelet Polygons and the Painlevé Equations. In Geometry and Analysis (Bombay, 1992), Ramanan (Ed.), pp. 151–185.
  • H. Hochstadt (1963) Estimates of the stability intervals for Hill’s equation. Proc. Amer. Math. Soc. 14 (6), pp. 930–932.
  • H. Hochstadt (1964) Differential Equations: A Modern Approach. Holt, Rinehart and Winston, New York.
  • 60: Mathematical Introduction
    This is because 𝐅 is akin to the notation used for Bessel functions (§10.2(ii)), inasmuch as 𝐅 is an entire function of each of its parameters a , b , and c :​ this results in fewer restrictions and simpler equations. …