About the Project

Abel means

AdvancedHelp

(0.001 seconds)

21—30 of 68 matching pages

21: 9.17 Methods of Computation
In the case of Ai ( z ) , for example, this means that in the sectors 1 3 π < | ph z | < π we may integrate along outward rays from the origin with initial values obtained from §9.2(ii). …
22: Bibliography
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • H. Alzer (1997a) A harmonic mean inequality for the gamma function. J. Comput. Appl. Math. 87 (2), pp. 195–198.
  • 23: 27.3 Multiplicative Properties
    Except for ν ( n ) , Λ ( n ) , p n , and π ( x ) , the functions in §27.2 are multiplicative, which means f ( 1 ) = 1 and …
    24: 3.10 Continued Fractions
    For several special functions the S -fractions are known explicitly, but in any case the coefficients a n can always be calculated from the power-series coefficients by means of the quotient-difference algorithm; see Table 3.10.1. … We continue by means of the rhombus ruleThe A n and B n of (3.10.2) can be computed by means of three-term recurrence relations (1.12.5). …
    25: 35.4 Partitions and Zonal Polynomials
    Mean-Value
    26: Errata
  • Section 1.13

    In Equation (1.13.4), the determinant form of the two-argument Wronskian

    1.13.4 𝒲 { w 1 ( z ) , w 2 ( z ) } = det [ w 1 ( z ) w 2 ( z ) w 1 ( z ) w 2 ( z ) ] = w 1 ( z ) w 2 ( z ) w 2 ( z ) w 1 ( z )

    was added as an equality. In ¶Wronskian (in §1.13(i)), immediately below Equation (1.13.4), a sentence was added indicating that in general the n -argument Wronskian is given by 𝒲 { w 1 ( z ) , , w n ( z ) } = det [ w k ( j 1 ) ( z ) ] , where 1 j , k n . Immediately below Equation (1.13.4), a sentence was added giving the definition of the n -argument Wronskian. It is explained just above (1.13.5) that this equation is often referred to as Abel’s identity. Immediately below Equation (1.13.5), a sentence was added explaining how it generalizes for n th-order differential equations. A reference to Ince (1926, §5.2) was added.

  • (10.9.26)

    The factor on the right-hand side containing cos ( μ ν ) θ has been been replaced with cos ( ( μ ν ) θ ) to clarify the meaning.

  • Equation (19.7.2)

    The second and the fourth lines containing k / i k have both been replaced with i k / k to clarify the meaning.

  • 27: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • W. Gautschi (1974) A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5 (2), pp. 278–281.
  • W. Gautschi (1992) On mean convergence of extended Lagrange interpolation. J. Comput. Appl. Math. 43 (1-2), pp. 19–35.
  • 28: 8.14 Integrals
    29: 22.10 Maclaurin Series
    30: Mathematical Introduction
    ( a , b ] or [ a , b ) half-closed intervals.
    mod or modulo m n ( mod p ) means p divides m n , where m , n , and p are positive integers with m > n .
    This means that the variable x ranges from 0 to 1 in intervals of 0. …