About the Project

3F2 functions of matrix argument

AdvancedHelp

(0.004 seconds)

11—20 of 982 matching pages

11: 11.9 Lommel Functions
§11.9 Lommel Functions
Provided that μ ± ν 1 , 3 , 5 , , (11.9.1) has the general solution … When μ ± ν 1 , 2 , 3 , , …
§11.9(iii) Asymptotic Expansion
For further information on Lommel functions see Watson (1944, §§10.7–10.75) and Babister (1967, Chapter 3). …
12: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.3 F 3 ( α , α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m ( α ) n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
13: 14.19 Toroidal (or Ring) Functions
§14.19 Toroidal (or Ring) Functions
§14.19(i) Introduction
§14.19(ii) Hypergeometric Representations
§14.19(iv) Sums
§14.19(v) Whipple’s Formula for Toroidal Functions
14: 5.15 Polygamma Functions
§5.15 Polygamma Functions
The functions ψ ( n ) ( z ) , n = 1 , 2 , , are called the polygamma functions. In particular, ψ ( z ) is the trigamma function; ψ ′′ , ψ ( 3 ) , ψ ( 4 ) are the tetra-, penta-, and hexagamma functions respectively. Most properties of these functions follow straightforwardly by differentiation of properties of the psi function. … In (5.15.2)–(5.15.7) n , m = 1 , 2 , 3 , , and for ζ ( n + 1 ) see §25.6(i). …
15: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
𝖰 ^ 1 2 + i τ μ ( x ) exists except when μ = 1 2 , 3 2 , and τ = 0 ; compare §14.3(i). … For extensions to complex arguments (including the range 1 < x < ), asymptotic expansions, and explicit error bounds, see Dunster (1991). For the case of purely imaginary order and argument see Dunster (2013). …
16: 5.2 Definitions
§5.2(i) Gamma and Psi Functions
Euler’s Integral
It is a meromorphic function with no zeros, and with simple poles of residue ( 1 ) n / n ! at z = n . …
5.2.2 ψ ( z ) = Γ ( z ) / Γ ( z ) , z 0 , 1 , 2 , .
5.2.3 γ = lim n ( 1 + 1 2 + 1 3 + + 1 n ln n ) = 0.57721 56649 01532 86060 .
17: 31.1 Special Notation
(For other notation see Notation for the Special Functions.)
x , y real variables.
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.
18: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … … On the circle of convergence, | z | = 1 , the Gauss series: …
§15.2(ii) Analytic Properties
19: 5.12 Beta Function
§5.12 Beta Function
Euler’s Beta Integral
See accompanying text
Figure 5.12.1: t -plane. Contour for first loop integral for the beta function. Magnify
See accompanying text
Figure 5.12.2: t -plane. Contour for second loop integral for the beta function. Magnify
Pochhammer’s Integral
20: 10.1 Special Notation
(For other notation see Notation for the Special Functions.) … For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. For the other functions when the order ν is replaced by n , it can be any integer. For the Kelvin functions the order ν is always assumed to be real. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).