About the Project

.2019%E4%BD%93%E6%93%8D%E4%B8%96%E7%95%8C%E6%9D%AF%E3%80%8Ewn4.com%E3%80%8F%E4%BC%AA%E7%90%83%E8%BF%B7%E4%B8%96%E7%95%8C%E6%9D%AF%E6%AE%B5%E5%AD%90.w6n2c9o.2022%E5%B9%B411%E6%9C%8830%E6%97%A511%E6%97%B644%E5%88%8622%E7%A7%92.8ekw666qq

AdvancedHelp

(0.020 seconds)

11—20 of 597 matching pages

11: Bibliography S
  • F. W. Schäfke and D. Schmidt (1966) Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III. Numer. Math. 8 (1), pp. 68–71.
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • R. Shail (1978) Lamé polynomial solutions to some elliptic crack and punch problems. Internat. J. Engrg. Sci. 16 (8), pp. 551–563.
  • R. Sips (1949) Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales. Trans. Amer. Math. Soc. 66 (1), pp. 93–134 (French).
  • R. Sips (1967) Répartition du courant alternatif dans un conducteur cylindrique de section elliptique. Acad. Roy. Belg. Bull. Cl. Sci. (5) 53 (8), pp. 861–878.
  • 12: Bibliography K
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • M. K. Kerimov and S. L. Skorokhodov (1984b) Calculation of the complex zeros of the modified Bessel function of the second kind and its derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 24 (8), pp. 1150–1163.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • 13: 33.16 Connection Formulas
    §33.16(i) F and G in Terms of f and h
    33.16.1 F ( η , ρ ) = ( 2 + 1 ) ! C ( η ) ( 2 η ) + 1 f ( 1 / η 2 , ; η ρ ) ,
    where C ( η ) is given by (33.2.5) or (33.2.6).
    §33.16(ii) f and h in Terms of F and G when ϵ > 0
    §33.16(iv) s and c in Terms of F and G when ϵ > 0
    14: 1.14 Integral Transforms
    In this subsection we let F ( x ) = ( f ) ( x ) . If f ( t ) is absolutely integrable on ( , ) , then F ( x ) is continuous, F ( x ) 0 as x ± , and … If f ( t ) and g ( t ) are absolutely integrable on ( , ) , then so is ( f g ) ( t ) , and its Fourier transform is F ( x ) G ( x ) , where G ( x ) is the Fourier transform of g ( t ) . … If f ( t ) and g ( t ) are continuous and absolutely integrable on ( , ) , and F ( x ) = G ( x ) for all x , then f ( t ) = g ( t ) for all t . … In this subsection we let F c ( x ) = c f ( x ) , F s ( x ) = s f ( x ) , G c ( x ) = c g ( x ) , and G s ( x ) = s g ( x ) . …
    15: 8 Incomplete Gamma and Related
    Functions
    Chapter 8 Incomplete Gamma and Related Functions
    16: 28.25 Asymptotic Expansions for Large z
    28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
    D 1 ± = 0 ,
    D 0 ± = 1 ,
    28.25.3 ( m + 1 ) D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) 8 i h + 2 h 2 a ) D m ± ± ( m 1 2 ) ( 8 i h m ) D m 1 ± = 0 , m 0 .
    17: 26.10 Integer Partitions: Other Restrictions
    p ( 𝒟 , n ) denotes the number of partitions of n into distinct parts. p m ( 𝒟 , n ) denotes the number of partitions of n into at most m distinct parts. p ( 𝒟 k , n ) denotes the number of partitions of n into parts with difference at least k . …If more than one restriction applies, then the restrictions are separated by commas, for example, p ( 𝒟 2 , T , n ) . … Note that p ( 𝒟 3 , n ) p ( 𝒟 3 , n ) , with strict inequality for n 9 . …
    18: 26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    D ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . …
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    26.6.4 r ( n ) = D ( n , n ) D ( n + 1 , n 1 ) , n 1 .
    26.6.10 D ( m , n ) = D ( m , n 1 ) + D ( m 1 , n ) + D ( m 1 , n 1 ) , m , n 1 ,
    19: 1.11 Zeros of Polynomials
    Set z = w 1 3 a to reduce f ( z ) = z 3 + a z 2 + b z + c to g ( w ) = w 3 + p w + q , with p = ( 3 b a 2 ) / 3 , q = ( 2 a 3 9 a b + 27 c ) / 27 . …
    p = ( 3 a 2 + 8 b ) / 8 ,
    Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . … Let … Then f ( z ) , with a n 0 , is stable iff a 0 0 ; D 2 k > 0 , k = 1 , , 1 2 n ; sign D 2 k + 1 = sign a 0 , k = 0 , 1 , , 1 2 n 1 2 .
    20: 21.5 Modular Transformations
    Let 𝐀 , 𝐁 , 𝐂 , and 𝐃 be g × g matrices with integer elements such that
    21.5.1 𝚪 = [ 𝐀 𝐁 𝐂 𝐃 ]
    21.5.4 θ ( [ [ 𝐂 𝛀 + 𝐃 ] 1 ] T 𝐳 | [ 𝐀 𝛀 + 𝐁 ] [ 𝐂 𝛀 + 𝐃 ] 1 ) = ξ ( 𝚪 ) det [ 𝐂 𝛀 + 𝐃 ] e π i 𝐳 [ [ 𝐂 𝛀 + 𝐃 ] 1 𝐂 ] 𝐳 θ ( 𝐳 | 𝛀 ) .
    Here ξ ( 𝚪 ) is an eighth root of unity, that is, ( ξ ( 𝚪 ) ) 8 = 1 . …
    21.5.9 θ [ 𝐃 𝜶 𝐂 𝜷 + 1 2 diag [ 𝐂 𝐃 T ] 𝐁 𝜶 + 𝐀 𝜷 + 1 2 diag [ 𝐀 𝐁 T ] ] ( [ [ 𝐂 𝛀 + 𝐃 ] 1 ] T 𝐳 | [ 𝐀 𝛀 + 𝐁 ] [ 𝐂 𝛀 + 𝐃 ] 1 ) = κ ( 𝜶 , 𝜷 , 𝚪 ) det [ 𝐂 𝛀 + 𝐃 ] e π i 𝐳 [ [ 𝐂 𝛀 + 𝐃 ] 1 𝐂 ] 𝐳 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) ,