About the Project

������2���������������WeChat���aptao168���Vk8YcIz

AdvancedHelp

(0.002 seconds)

21—30 of 802 matching pages

21: 10.36 Other Differential Equations
The quantity λ 2 in (10.13.1)–(10.13.6) and (10.13.8) can be replaced by λ 2 if at the same time the symbol 𝒞 in the given solutions is replaced by 𝒵 . …
10.36.1 z 2 ( z 2 + ν 2 ) w ′′ + z ( z 2 + 3 ν 2 ) w ( ( z 2 + ν 2 ) 2 + z 2 ν 2 ) w = 0 , w = 𝒵 ν ( z ) ,
10.36.2 z 2 w ′′ + z ( 1 ± 2 z ) w + ( ± z ν 2 ) w = 0 , w = e z 𝒵 ν ( z ) .
22: 29.4 Graphics
See accompanying text
Figure 29.4.3: a 1.5 m ( k 2 ) , b 1.5 m + 1 ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 . Magnify
See accompanying text
Figure 29.4.8: a 2.5 m ( k 2 ) , b 2.5 m + 1 ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 . Magnify
See accompanying text
Figure 29.4.12: b ν 2 ( k 2 ) as a function of ν and k 2 . Magnify 3D Help
See accompanying text
Figure 29.4.28: 𝐸𝑠 1.5 2 ( x , k 2 ) as a function of x and k 2 . Magnify 3D Help
See accompanying text
Figure 29.4.32: 𝐸𝑠 2.5 2 ( x , k 2 ) as a function of x and k 2 . Magnify 3D Help
23: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
For k = 2 M 2 is the number of permutations of { 1 , 2 , , n } with a 1 cycles of length 1, a 2 cycles of length 2, , and a n cycles of length n : … M 3 is the number of set partitions of { 1 , 2 , , n } with a 1 subsets of size 1, a 2 subsets of size 2, , and a n subsets of size n : …For each n all possible values of a 1 , a 2 , , a n are covered. … where the summation is over all nonnegative integers n 1 , n 2 , , n k such that n 1 + n 2 + + n k = n . …
24: 10.13 Other Differential Equations
10.13.2 w ′′ + ( λ 2 4 z ν 2 1 4 z 2 ) w = 0 , w = z 1 2 𝒞 ν ( λ z 1 2 ) ,
10.13.3 w ′′ + λ 2 z p 2 w = 0 , w = z 1 2 𝒞 1 / p ( 2 λ z 1 2 p / p ) ,
10.13.5 z 2 w ′′ + ( 1 2 r ) z w + ( λ 2 q 2 z 2 q + r 2 ν 2 q 2 ) w = 0 , w = z r 𝒞 ν ( λ z q ) ,
10.13.7 z 2 ( z 2 ν 2 ) w ′′ + z ( z 2 3 ν 2 ) w + ( ( z 2 ν 2 ) 2 ( z 2 + ν 2 ) ) w = 0 , w = 𝒞 ν ( z ) ,
10.13.11 ( ϑ 4 2 ( ν 2 + μ 2 ) ϑ 2 + ( ν 2 μ 2 ) 2 ) w + 4 z 2 ( ϑ + 1 ) ( ϑ + 2 ) w = 0 , w = 𝒞 ν ( z ) 𝒟 μ ( z ) .
25: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
2 ( sin 1 2 x ) α + 1 2 ( cos 1 2 x ) β + 1 2 × P n ( α , β ) ( cos x ) 1 0 1 4 α 2 4 sin 2 1 2 x + 1 4 β 2 4 cos 2 1 2 x ( n + 1 2 ( α + β + 1 ) ) 2
5 T n ( x ) 1 x 2 x 0 n 2
9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
12 H n ( x ) 1 2 x 0 2 n
13 e 1 2 x 2 H n ( x ) 1 0 x 2 2 n + 1
26: 22.7 Landen Transformations
k 2 = 2 k 1 + k ,
k 2 = 1 k 1 + k ,
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.7 cn ( z , k ) = ( 1 + k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.8 dn ( z , k ) = ( 1 k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) + k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) .
27: 29.21 Tables
  • Ince (1940a) tabulates the eigenvalues a ν m ( k 2 ) , b ν m + 1 ( k 2 ) (with a ν 2 m + 1 and b ν 2 m + 1 interchanged) for k 2 = 0.1 , 0.5 , 0.9 , ν = 1 2 , 0 ( 1 ) 25 , and m = 0 , 1 , 2 , 3 . Precision is 4D.

  • Arscott and Khabaza (1962) tabulates the coefficients of the polynomials P in Table 29.12.1 (normalized so that the numerically largest coefficient is unity, i.e. monic polynomials), and the corresponding eigenvalues h for k 2 = 0.1 ( .1 ) 0.9 , n = 1 ( 1 ) 30 . Equations from §29.6 can be used to transform to the normalization adopted in this chapter. Precision is 6S.

  • 28: 29.3 Definitions and Basic Properties
    They are denoted by a ν 2 m ( k 2 ) , a ν 2 m + 1 ( k 2 ) , b ν 2 m + 1 ( k 2 ) , b ν 2 m + 2 ( k 2 ) , where m = 0 , 1 , 2 , ; see Table 29.3.1. … The quantity H = 2 a ν 2 m + 1 ( k 2 ) ν ( ν + 1 ) k 2 satisfies equation (29.3.10) with … The quantity H = 2 b ν 2 m + 1 ( k 2 ) ν ( ν + 1 ) k 2 satisfies equation (29.3.10) with … The quantity H = 2 b ν 2 m + 2 ( k 2 ) ν ( ν + 1 ) k 2 satisfies equation (29.3.10) with … The eigenfunctions corresponding to the eigenvalues of §29.3(i) are denoted by 𝐸𝑐 ν 2 m ( z , k 2 ) , 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) . …
    29: 10.49 Explicit Formulas
    Again, with a k ( n + 1 2 ) as in (10.49.1), … k = 0 n a k ( n + 1 2 ) z n k is sometimes called the Bessel polynomial of degree n . …
    𝗃 2 2 ( z ) + 𝗒 2 2 ( z ) = z 2 + 3 z 4 + 9 z 6 .
    ( 𝗂 0 ( 1 ) ( z ) ) 2 ( 𝗂 0 ( 2 ) ( z ) ) 2 = z 2 ,
    ( 𝗂 2 ( 1 ) ( z ) ) 2 ( 𝗂 2 ( 2 ) ( z ) ) 2 = z 2 + 3 z 4 9 z 6 .
    30: 24.9 Inequalities
    Except where otherwise noted, the inequalities in this section hold for n = 1 , 2 , . … (24.9.3)–(24.9.5) hold for 1 2 > x > 0 . …
    24.9.5 4 ( 2 n 1 ) ! π 2 n 2 2 n 1 2 2 n 2 > ( 1 ) n E 2 n 1 ( x ) > 0 .
    (24.9.6)–(24.9.7) hold for n = 2 , 3 , . …
    24.9.8 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 β 2 n ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 2 n