About the Project

韩国顺天乡大学在读证明办理《做证微fuk7778》neq

AdvancedHelp

(0.001 seconds)

11—20 of 222 matching pages

11: 5.5 Functional Relations
5.5.3 Γ ( z ) Γ ( 1 z ) = π / sin ( π z ) , z 0 , ± 1 , ,
5.5.4 ψ ( z ) ψ ( 1 z ) = π / tan ( π z ) , z 0 , ± 1 , .
For 2 z 0 , 1 , 2 , , … For n z 0 , 1 , 2 , , …
12: 15.15 Sums
Here z 0 ( 0 ) is an arbitrary complex constant and the expansion converges when | z z 0 | > max ( | z 0 | , | z 0 1 | ) . …
13: 4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.2 tan ( a z ) = a tan z 1 + ( 1 a 2 ) tan 2 z 3 + ( 4 a 2 ) tan 2 z 5 + ( 9 a 2 ) tan 2 z 7 + , | z | < 1 2 π , a z ± 1 2 π , ± 3 2 π , .
14: 5.8 Infinite Products
5.8.1 Γ ( z ) = lim k k ! k z z ( z + 1 ) ( z + k ) , z 0 , 1 , 2 , ,
5.8.3 | Γ ( x ) Γ ( x + i y ) | 2 = k = 0 ( 1 + y 2 ( x + k ) 2 ) , x 0 , 1 , .
15: 13.17 Continued Fractions
If κ , μ such that μ ± ( κ 1 2 ) 1 , 2 , 3 , , then … If κ , μ such that μ + 1 2 ± ( κ + 1 ) 1 , 2 , 3 , , then …
16: 4.5 Inequalities
4.5.1 x 1 + x < ln ( 1 + x ) < x , x > 1 , x 0 ,
4.5.2 x < ln ( 1 x ) < x 1 x , x < 1 , x 0 ,
In (4.5.7)–(4.5.12) it is assumed that x 0 . …
17: 10.13 Other Differential Equations
In the following equations ν , λ , p , q , and r are real or complex constants with λ 0 , p 0 , and q 0 . …
18: 14.17 Integrals
14.17.2 ( 1 x 2 ) μ / 2 𝖯 ν μ ( x ) d x = ( 1 x 2 ) ( μ + 1 ) / 2 ( ν μ ) ( ν + μ + 1 ) 𝖯 ν μ + 1 ( x ) , μ ν or ν 1 .
14.17.10 1 1 𝖯 ν ( x ) 𝖯 λ ( x ) d x = 2 ( 2 sin ( ν π ) sin ( λ π ) ( ψ ( ν + 1 ) ψ ( λ + 1 ) ) + π sin ( ( λ ν ) π ) ) π 2 ( λ ν ) ( λ + ν + 1 ) , λ ν or ν 1 .
14.17.12 1 1 𝖰 ν ( x ) 𝖰 λ ( x ) d x = ( ( ψ ( ν + 1 ) ψ ( λ + 1 ) ) ( 1 + cos ( ν π ) cos ( λ π ) ) + 1 2 π sin ( ( λ ν ) π ) ) ( λ ν ) ( λ + ν + 1 ) , λ ν or ν 1 , λ  and  ν 1 , 2 , 3 , .
14.17.16 1 1 𝖯 l m ( x ) 𝖰 n m ( x ) d x = ( 1 ( 1 ) l + n ) ( l + m ) ! ( l n ) ( l + n + 1 ) ( l m ) ! , l , m , n = 0 , 1 , 2 , , l n .
14.17.19 1 Q ν ( x ) Q λ ( x ) d x = ψ ( λ + 1 ) ψ ( ν + 1 ) ( λ ν ) ( λ + ν + 1 ) , ( λ + ν ) > 1 , λ ν , λ and ν 1 , 2 , 3 , .
19: 25.10 Zeros
The product representation (25.2.11) implies ζ ( s ) 0 for s > 1 . Also, ζ ( s ) 0 for s = 1 , a property first established in Hadamard (1896) and de la Vallée Poussin (1896a, b) in the proof of the prime number theorem (25.16.3). …Except for the trivial zeros, ζ ( s ) 0 for s 0 . …
20: 4.22 Infinite Products and Partial Fractions
When z n π , n , …