About the Project

重庆时时彩近120期【AG真人官方qee9.com】vec

AdvancedHelp

(0.002 seconds)

11—20 of 256 matching pages

11: 10.30 Limiting Forms
§10.30(i) z 0
When ν is fixed and z 0 , …For K ν ( x ) , when ν is purely imaginary and x 0 + , see (10.45.2) and (10.45.7).
§10.30(ii) z
When ν is fixed and z , …
12: 18.24 Hahn Class: Asymptotic Approximations
When the parameters α and β are fixed and the ratio n / N = c is a constant in the interval (0,1), uniform asymptotic formulas (as n ) of the Hahn polynomials Q n ( z ; α , β , N ) can be found in Lin and Wong (2013) for z in three overlapping regions, which together cover the entire complex plane. … With x = λ N and ν = n / N , Li and Wong (2000) gives an asymptotic expansion for K n ( x ; p , N ) as n , that holds uniformly for λ and ν in compact subintervals of ( 0 , 1 ) . … For two asymptotic expansions of M n ( n x ; β , c ) as n , with β and c fixed, see Jin and Wong (1998) and Wang and Wong (2011). … Dunster (2001b) provides various asymptotic expansions for C n ( x ; a ) as n , in terms of elementary functions or in terms of Bessel functions. … For an asymptotic expansion of P n ( λ ) ( n x ; ϕ ) as n , with ϕ fixed, see Li and Wong (2001). …
13: 24.11 Asymptotic Approximations
As n
24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
24.11.3 ( 1 ) n E 2 n 2 2 n + 2 ( 2 n ) ! π 2 n + 1 ,
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
14: 18.21 Hahn Class: Interrelations
Hahn Krawtchouk
Hahn Meixner
Krawtchouk Charlier
Meixner Charlier
Continuous Hahn Meixner–Pollaczek
15: 4.31 Special Values and Limits
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,
4.31.3 lim z 0 cosh z 1 z 2 = 1 2 .
16: 28.9 Zeros
For q the zeros of ce 2 n ( z , q ) and se 2 n + 1 ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 n ( q 1 / 4 ( π 2 z ) ) , and the zeros of ce 2 n + 1 ( z , q ) and se 2 n + 2 ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 n + 1 ( q 1 / 4 ( π 2 z ) ) . …Furthermore, for q > 0 ce m ( z , q ) and se m ( z , q ) also have purely imaginary zeros that correspond uniquely to the purely imaginary z -zeros of J m ( 2 q cos z ) 10.21(i)), and they are asymptotically equal as q 0 and | z | . …
17: 19.27 Asymptotic Approximations and Expansions
19.27.2 R F ( x , y , z ) = 1 2 z ( ln 8 z a + g ) ( 1 + O ( a z ) ) , a / z 0 .
19.27.3 R F ( x , y , z ) = R F ( 0 , y , z ) 1 h ( x h + O ( x h ) ) , x / h 0 .
19.27.4 R G ( x , y , z ) = z 2 ( 1 + O ( a z ln z a ) ) , a / z 0 .
19.27.5 R G ( x , y , z ) = R G ( 0 , y , z ) + x O ( x / h ) , x / h 0 .
19.27.6 R G ( 0 , y , z ) = z 2 + y 8 z ( ln ( 16 z y ) 1 ) ( 1 + O ( y z ) ) , y / z 0 .
18: 36.11 Leading-Order Asymptotics
36.11.3 Ψ 2 ( 0 , y ) = { π / y ( exp ( 1 4 i π ) + o ( 1 ) ) , y + , π / | y | exp ( 1 4 i π ) ( 1 + i 2 exp ( 1 4 i y 2 ) + o ( 1 ) ) , y .
36.11.4 Ψ 3 ( x , 0 , 0 ) = 2 π ( 5 | x | 3 ) 1 / 8 { exp ( 2 2 ( x / 5 ) 5 / 4 ) ( cos ( 2 2 ( x / 5 ) 5 / 4 1 8 π ) + o ( 1 ) ) , x + , cos ( 4 ( | x | / 5 ) 5 / 4 1 4 π ) + o ( 1 ) , x .
36.11.5 Ψ 3 ( 0 , y , 0 ) = Ψ 3 ( 0 , y , 0 ) ¯ = exp ( 1 4 i π ) π / y ( 1 ( i / 3 ) exp ( 3 2 i ( 2 y / 5 ) 5 / 3 ) + o ( 1 ) ) , y + .
36.11.6 Ψ 3 ( 0 , 0 , z ) = Γ ( 1 3 ) | z | 1 / 3 3 + { o ( 1 ) , z + , 2 π 5 1 / 4 ( 3 | z | ) 3 / 4 ( cos ( 2 3 ( 3 | z | 5 ) 5 / 2 1 4 π ) + o ( 1 ) ) , z .
36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
19: 11.11 Asymptotic Expansions of Anger–Weber Functions
Then as z in | ph z | π δ If z is fixed, and ν in | ph ν | π in such a way that ν is bounded away from the set of all integers, then … as n ± . … In particular, as ν , … Also, as ν in | ph ν | 2 π δ , …
20: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
22.12.4 2 i K dn ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t ( n + 1 2 ) τ ) ) = lim N n = N N ( 1 ) n ( lim M m = M M 1 t m ( n + 1 2 ) τ ) .
22.12.7 2 i K k nd ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t + 1 2 ( n + 1 2 ) τ ) ) = lim N n = N N ( 1 ) n lim M ( m = M M 1 t + 1 2 m ( n + 1 2 ) τ ) ,
22.12.10 2 K k sc ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t + 1 2 n τ ) ) = lim N n = N N ( 1 ) n ( lim M m = M M 1 t + 1 2 m n τ ) ,
22.12.13 2 K cs ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t n τ ) ) = lim N n = N N ( 1 ) n ( lim M m = M M 1 t m n τ ) .