About the Project

赢元宝的斗地主叫什么【世界杯下注qee9.com】1999c

AdvancedHelp

The term"注qee9.com" was not found.Possible alternative term: "welcom".

(0.010 seconds)

1—10 of 461 matching pages

1: 19.2 Definitions
Here a , b , p are real parameters, and k c and x are real or complex variables, with p 0 , k c 0 . … If 1 < k 1 / sin ϕ , then k c is pure imaginary. …
§19.2(iv) A Related Function: R C ( x , y )
When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …For the special cases of R C ( x , x ) and R C ( 0 , y ) see (19.6.15). …
2: Publications
  • D. W. Lozier, B. R. Miller and B. V. Saunders (1999) Design of a Digital Mathematical Library for Science, Technology and Education, Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries (IEEE ADL ’99, Baltimore, Maryland, May 19, 1999). PDF
  • B. V. Saunders and Q. Wang (1999) Using Numerical Grid Generation to Facilitate 3D Visualization of Complicated Mathematical Functions, Technical Report NISTIR 6413 (November 1999), National Institute of Standards and Technology. PDF
  • Q. Wang and B. V. Saunders (1999) Interactive 3D Visualization of Mathematical Functions Using VRML, Technical Report NISTIR 6289 (February 1999), National Institute of Standards and Technology. PDF
  • D. W. Lozier (2000) The DLMF Project: A New Initiative in Classical Special Functions, in Special Functions—Proceedings of the International Workshop, Hong Kong, June 21-25, 1999 (C. Dunkl, M. Ismail, R. Wong, eds.), World Scientific, pp. 207–220. PDF
  • R. Boisvert, C. W. Clark, D. Lozier and F. Olver (2011) A Special Functions Handbook for the Digital Age, Notices of the American Mathematical Society 58, 7 (2011), pp. 905–911. PDF
  • 3: Bibliography Q
  • F. Qi and J. Mei (1999) Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwendungen 18 (3), pp. 793–799.
  • W. Qiu and R. Wong (2004) Asymptotic expansion of the Krawtchouk polynomials and their zeros. Comput. Methods Funct. Theory 4 (1), pp. 189–226.
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • C. Quesne (2011) Higher-Order SUSY, Exactly Solvable Potentials, and Exceptional Orthogonal Polynomials. Modern Physics Letters A 26, pp. 1843–1852.
  • 4: 18 Orthogonal Polynomials
    5: 31.13 Asymptotic Approximations
    For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
    6: Ranjan Roy
    He was the Ralph C. …  Askey), published by Cambridge University Press in 1999. …
    7: 15.5 Derivatives and Contiguous Functions
    The six functions F ( a ± 1 , b ; c ; z ) , F ( a , b ± 1 ; c ; z ) , F ( a , b ; c ± 1 ; z ) are said to be contiguous to F ( a , b ; c ; z ) . …
    15.5.14 c ( a + ( b c ) z ) F ( a , b ; c ; z ) a c ( 1 z ) F ( a + 1 , b ; c ; z ) + ( c a ) ( c b ) z F ( a , b ; c + 1 ; z ) = 0 ,
    15.5.18 c ( c 1 ) ( z 1 ) F ( a , b ; c 1 ; z ) + c ( c 1 ( 2 c a b 1 ) z ) F ( a , b ; c ; z ) + ( c a ) ( c b ) z F ( a , b ; c + 1 ; z ) = 0 .
    By repeated applications of (15.5.11)–(15.5.18) any function F ( a + k , b + ; c + m ; z ) , in which k , , m are integers, can be expressed as a linear combination of F ( a , b ; c ; z ) and any one of its contiguous functions, with coefficients that are rational functions of a , b , c , and z . …
    15.5.20 z ( 1 z ) ( d F ( a , b ; c ; z ) / d z ) = ( c a ) F ( a 1 , b ; c ; z ) + ( a c + b z ) F ( a , b ; c ; z ) = ( c b ) F ( a , b 1 ; c ; z ) + ( b c + a z ) F ( a , b ; c ; z ) ,
    8: 15.7 Continued Fractions
    t n = c + n ,
    u 2 n + 1 = ( a + n ) ( c b + n ) ,
    u 2 n = ( b + n ) ( c a + n ) .
    v n = c + n + ( b a + n + 1 ) z ,
    w n = ( b + n ) ( c a + n ) z .
    9: 15.14 Integrals
    15.14.1 0 x s 1 𝐅 ( a , b c ; x ) d x = Γ ( s ) Γ ( a s ) Γ ( b s ) Γ ( a ) Γ ( b ) Γ ( c s ) , min ( a , b ) > s > 0 .
    Integrals of the form x α ( x + t ) β F ( a , b ; c ; x ) d x and more complicated forms are given in Apelblat (1983, pp. 370–387), Prudnikov et al. (1990, §§1.15 and 2.21), Gradshteyn and Ryzhik (2000, §7.5) and Koornwinder (2015). …
    10: 26.5 Lattice Paths: Catalan Numbers
    C ( n ) is the Catalan number. …(Sixty-six equivalent definitions of C ( n ) are given in Stanley (1999, pp. 219–229).) …
    26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
    26.5.4 C ( n + 1 ) = 2 ( 2 n + 1 ) n + 2 C ( n ) ,
    26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .