About the Project

石家庄学院毕业证样本【仿证微CXFK69】cohl

AdvancedHelp

Your search matched, but the results seem poor.

The term"cxfk69" was not found.Possible alternative term: "cosh".

See Search Help for suggestions.

(0.002 seconds)

1—10 of 12 matching pages

1: Howard S. Cohl
Profile
Howard S. Cohl
Howard S. Cohl (b. … Cohl has published papers in orthogonal polynomials and special functions, and is particularly interested in fundamental solutions of linear partial differential equations on Riemannian manifolds, associated Legendre functions, generalized and basic hypergeometric functions, eigenfunction expansions of fundamental solutions in separable coordinate systems for linear partial differential equations, orthogonal polynomial generating function and generalized expansions, and q -series. …
2: How to Cite
  • [DLMF]

    NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.2.0 of 2024-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

  • 3: 14.28 Sums
    1 in Cohl (2013b) and Theorem 1 in Cohl (2013a) respectively. …
    4: About the Project
     Cohl as Technical Editor, and Marje A. …
    5: Staff
  • Howard S. Cohl, Technical Editor, NIST

  • 6: Bibliography C
  • H. S. Cohl and R. S. Costas-Santos (2020) Multi-Integral Representations for Associated Legendre and Ferrers Functions. Symmetry 12 (10).
  • H. S. Cohl, J. Park, and H. Volkmer (2021) Gauss hypergeometric representations of the Ferrers function of the second kind. SIGMA Symmetry Integrability Geom. Methods Appl. 17, pp. Paper 053, 33.
  • H. S. Cohl (2011) On parameter differentiation for integral representations of associated Legendre functions. SIGMA Symmetry Integrability Geom. Methods Appl. 7, pp. Paper 050, 16.
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.
  • H. S. Cohl (2013b) On a generalization of the generating function for Gegenbauer polynomials. Integral Transforms Spec. Funct. 24 (10), pp. 807–816.
  • 7: 14.6 Integer Order
    For generalizations see Cohl and Costas-Santos (2020). …
    8: 14.11 Derivatives with Respect to Degree or Order
    See also Szmytkowski (2006, 2009, 2011, 2012), Cohl (2010, 2011) and Magnus et al. (1966, pp. 177–178).
    9: 14.13 Trigonometric Expansions
    14.13.2 𝖰 ν μ ( cos θ ) = π 1 / 2 2 μ ( sin θ ) μ k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! cos ( ( ν + μ + 2 k + 1 ) θ ) .
    10: DLMF Project News
    error generating summary