About the Project

毕业证跟学位证书的区别〖办证V信ATV1819〗whitm

AdvancedHelp

(0.002 seconds)

1—10 of 26 matching pages

1: 13.25 Products
13.25.1 M κ , μ ( z ) M κ , μ 1 ( z ) + ( 1 2 + μ + κ ) ( 1 2 + μ κ ) 4 μ ( 1 + μ ) ( 1 + 2 μ ) 2 M κ , μ + 1 ( z ) M κ , μ ( z ) = 1 .
For integral representations, integrals, and series containing products of M κ , μ ( z ) and W κ , μ ( z ) see Erdélyi et al. (1953a, §6.15.3).
2: 13.15 Recurrence Relations and Derivatives
13.15.1 ( κ μ 1 2 ) M κ 1 , μ ( z ) + ( z 2 κ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) M κ + 1 , μ ( z ) = 0 ,
13.15.2 2 μ ( 1 + 2 μ ) z M κ 1 2 , μ 1 2 ( z ) ( z + 2 μ ) ( 1 + 2 μ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) z M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
13.15.3 ( κ μ 1 2 ) M κ 1 2 , μ + 1 2 ( z ) + ( 1 + 2 μ ) z M κ , μ ( z ) ( κ + μ + 1 2 ) M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
13.15.4 2 μ M κ 1 2 , μ 1 2 ( z ) 2 μ M κ + 1 2 , μ 1 2 ( z ) z M κ , μ ( z ) = 0 ,
13.15.5 2 μ ( 1 + 2 μ ) M κ , μ ( z ) 2 μ ( 1 + 2 μ ) z M κ 1 2 , μ 1 2 ( z ) ( κ μ 1 2 ) z M κ 1 2 , μ + 1 2 ( z ) = 0 ,
3: 13.18 Relations to Other Functions
13.18.1 M 0 , 1 2 ( 2 z ) = 2 sinh z ,
13.18.2 M κ , κ 1 2 ( z ) = W κ , κ 1 2 ( z ) = W κ , κ + 1 2 ( z ) = e 1 2 z z κ ,
13.18.3 M κ , κ 1 2 ( z ) = e 1 2 z z κ .
13.18.4 M μ 1 2 , μ ( z ) = 2 μ e 1 2 z z 1 2 μ γ ( 2 μ , z ) ,
4: 13.14 Definitions and Basic Properties
except that M κ , μ ( z ) does not exist when 2 μ = 1 , 2 , 3 , . … In general M κ , μ ( z ) and W κ , μ ( z ) are many-valued functions of z with branch points at z = 0 and z = . … Although M κ , μ ( z ) does not exist when 2 μ = 1 , 2 , 3 , , many formulas containing M κ , μ ( z ) continue to apply in their limiting form. … Except when z = 0 , each branch of the functions M κ , μ ( z ) / Γ ( 2 μ + 1 ) and W κ , μ ( z ) is entire in κ and μ . Also, unless specified otherwise M κ , μ ( z ) and W κ , μ ( z ) are assumed to have their principal values. …
5: 13.26 Addition and Multiplication Theorems
§13.26(i) Addition Theorems for M κ , μ ( z )
The function M κ , μ ( x + y ) has the following expansions: …
13.26.2 e 1 2 y ( x + y x ) μ + 1 2 n = 0 ( 1 2 + μ κ ) n ( 1 + 2 μ ) n n ! ( y x ) n M κ 1 2 n , μ + 1 2 n ( x ) ,
§13.26(iii) Multiplication Theorems for M κ , μ ( z ) and W κ , μ ( z )
To obtain similar expansions for M κ , μ ( x y ) and W κ , μ ( x y ) , replace y in the previous two subsections by ( y 1 ) x .
6: 13.32 Software
7: 13.24 Series
For expansions of arbitrary functions in series of M κ , μ ( z ) functions see Schäfke (1961b). …
13.24.1 M κ , μ ( z ) = Γ ( κ + μ ) 2 2 κ + 2 μ z 1 2 κ s = 0 ( 1 ) s ( 2 κ + 2 μ ) s ( 2 κ ) s ( 1 + 2 μ ) s s ! ( κ + μ + s ) I κ + μ + s ( 1 2 z ) , 2 μ , κ + μ 1 , 2 , 3 , ,
13.24.2 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = 2 2 μ z μ + 1 2 s = 0 p s ( μ ) ( z ) ( 2 κ z ) 2 μ s J 2 μ + s ( 2 κ z ) ,
8: 13.22 Zeros
From (13.14.2) and (13.14.3) M κ , μ ( z ) has the same zeros as M ( 1 2 + μ κ , 1 + 2 μ , z ) and W κ , μ ( z ) has the same zeros as U ( 1 2 + μ κ , 1 + 2 μ , z ) , hence the results given in §13.9 can be adopted. … For example, if μ ( 0 ) is fixed and κ ( > 0 ) is large, then the r th positive zero ϕ r of M κ , μ ( z ) is given by …
9: 8.5 Confluent Hypergeometric Representations
For the confluent hypergeometric functions M , 𝐌 , U , and the Whittaker functions M κ , μ and W κ , μ , see §§13.2(i) and 13.14(i). …
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
10: 13.1 Special Notation
The main functions treated in this chapter are the Kummer functions M ( a , b , z ) and U ( a , b , z ) , Olver’s function 𝐌 ( a , b , z ) , and the Whittaker functions M κ , μ ( z ) and W κ , μ ( z ) . … Other notations are: F 1 1 ( a ; b ; z ) 16.2(i)) and Φ ( a ; b ; z ) (Humbert (1920)) for M ( a , b , z ) ; Ψ ( a ; b ; z ) (Erdélyi et al. (1953a, §6.5)) for U ( a , b , z ) ; V ( b a , b , z ) (Olver (1997b, p. 256)) for e z U ( a , b , z ) ; Γ ( 1 + 2 μ ) κ , μ (Buchholz (1969, p. 12)) for M κ , μ ( z ) . …