About the Project

哪里能买到安蒂奥克学院文凭毕业证【假证加微aptao168】8e18Buz

AdvancedHelp

(0.002 seconds)

21—30 of 221 matching pages

21: 36.7 Zeros
Inside the cusp, that is, for x 2 < 8 | y | 3 / 27 , the zeros form pairs lying in curved rows. … Just outside the cusp, that is, for x 2 > 8 | y | 3 / 27 , there is a single row of zeros on each side. …
x n = ± ( 8 27 ) 1 / 2 | y n | 3 / 2 ( 1 + ξ n ) ,
y n = ( 3 π ( 8 n + 5 ) 9 + 8 ξ n ) 1 / 2 ,
36.7.3 3 π ( 8 n + 5 ) 9 + 8 ξ n ξ n 3 / 2 = 27 16 ( 3 2 ) 1 / 2 ( ln ( 1 ξ n ) + 3 ln ( 3 2 ) ) .
22: 5.16 Sums
5.16.1 k = 1 ( 1 ) k ψ ( k ) = π 2 8 ,
23: 13.27 Mathematical Applications
Vilenkin (1968, Chapter 8) constructs irreducible representations of this group, in which the diagonal matrices correspond to operators of multiplication by an exponential function. …
24: 24.20 Tables
Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
25: 34.14 Tables
Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. …
26: 23.20 Mathematical Applications
Given P , calculate 2 P , 4 P , 8 P by doubling as above. …If any of 2 P , 4 P , 8 P is not an integer, then the point has infinite order. Otherwise observe any equalities between P , 2 P , 4 P , 8 P , and their negatives. The order of a point (if finite and not already determined) can have only the values 3, 5, 6, 7, 9, 10, or 12, and so can be found from 2 P = P , 4 P = P , 4 P = 2 P , 8 P = P , 8 P = P , 8 P = 2 P , or 8 P = 4 P . …
23.20.8 ( 1 u 8 ) ( 1 v 8 ) = ( 1 u v ) 8 , p = 7 .
27: 27.2 Functions
Table 27.2.1: Primes.
n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
8 19 61 107 163 223 271 337 397 457 521
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
4 2 3 7 17 16 2 18 30 8 8 72 43 42 2 44
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
28: 33.10 Limiting Forms for Large ρ or Large | η |
F ( η , ρ ) ( 2 + 1 ) ! C ( η ) ( 2 η ) + 1 ( 2 η ρ ) 1 / 2 I 2 + 1 ( ( 8 η ρ ) 1 / 2 ) ,
G ( η , ρ ) 2 ( 2 η ) ( 2 + 1 ) ! C ( η ) ( 2 η ρ ) 1 / 2 K 2 + 1 ( ( 8 η ρ ) 1 / 2 ) .
F 0 ( η , ρ ) e π η ( π ρ ) 1 / 2 I 1 ( ( 8 η ρ ) 1 / 2 ) ,
G 0 ( η , ρ ) 2 e π η ( ρ / π ) 1 / 2 K 1 ( ( 8 η ρ ) 1 / 2 ) ,
F 0 ( η , ρ ) e π η ( 2 π η ) 1 / 2 I 0 ( ( 8 η ρ ) 1 / 2 ) ,
29: 9.9 Zeros
9.9.6 a k = T ( 3 8 π ( 4 k 1 ) ) ,
9.9.7 Ai ( a k ) = ( 1 ) k 1 V ( 3 8 π ( 4 k 1 ) ) ,
9.9.8 a k = U ( 3 8 π ( 4 k 3 ) ) ,
9.9.9 Ai ( a k ) = ( 1 ) k 1 W ( 3 8 π ( 4 k 3 ) ) .
9.9.10 b k = T ( 3 8 π ( 4 k 3 ) ) ,
30: 10.61 Definitions and Basic Properties
ber 1 2 ( x 2 ) = 2 3 4 π x ( e x cos ( x + π 8 ) e x cos ( x π 8 ) ) ,
bei 1 2 ( x 2 ) = 2 3 4 π x ( e x sin ( x + π 8 ) + e x sin ( x π 8 ) ) .
ber 1 2 ( x 2 ) = 2 3 4 π x ( e x sin ( x + π 8 ) e x sin ( x π 8 ) ) ,
bei 1 2 ( x 2 ) = 2 3 4 π x ( e x cos ( x + π 8 ) + e x cos ( x π 8 ) ) .
10.61.11 ker 1 2 ( x 2 ) = kei 1 2 ( x 2 ) = 2 3 4 π x e x sin ( x π 8 ) ,