About the Project

办假的科威特驾驶证【somewhat微aptao168】ell

AdvancedHelp

(0.001 seconds)

11—20 of 168 matching pages

11: Peter L. Walker
Profile
Peter L. Walker
Peter L. Walker (b. …
12: Gloria Wiersma
She was one of the  editors for the DLMF project.
13: 23.10 Addition Theorems and Other Identities
23.10.17 ( c z | c 𝕃 ) = c 2 ( z | 𝕃 ) ,
23.10.18 ζ ( c z | c 𝕃 ) = c 1 ζ ( z | 𝕃 ) ,
23.10.19 σ ( c z | c 𝕃 ) = c σ ( z | 𝕃 ) .
Also, when 𝕃 is replaced by c 𝕃 the lattice invariants g 2 and g 3 are divided by c 4 and c 6 , respectively. …
14: 10 Bessel Functions
15: 23.14 Integrals
23.14.2 2 ( z ) d z = 1 6 ( z ) + 1 12 g 2 z ,
16: 23 Weierstrass Elliptic and Modular
Functions
17: 34.1 Special Notation
2 j 1 , 2 j 2 , 2 j 3 , 2 l 1 , 2 l 2 , 2 l 3 nonnegative integers.
{ j 1 j 2 j 3 l 1 l 2 l 3 } ,
18: 23.2 Definitions and Periodic Properties
The generators of a given lattice 𝕃 are not unique. …where a , b , c , d are integers, then 2 χ 1 , 2 χ 3 are generators of 𝕃 iff … When z 𝕃 the functions are related by … When it is important to display the lattice with the functions they are denoted by ( z | 𝕃 ) , ζ ( z | 𝕃 ) , and σ ( z | 𝕃 ) , respectively. … If 2 ω 1 , 2 ω 3 is any pair of generators of 𝕃 , and ω 2 is defined by (23.2.1), then …
19: 18.4 Graphics
See accompanying text
Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.6: Laguerre polynomials L 3 ( α ) ( x ) , α = 0 , 1 , 2 , 3 , 4 . Magnify
See accompanying text
Figure 18.4.8: Laguerre polynomials L 3 ( α ) ( x ) , 0 α 3 , 0 x 10 . Magnify 3D Help
See accompanying text
Figure 18.4.9: Laguerre polynomials L 4 ( α ) ( x ) , 0 α 3 , 0 x 10 . Magnify 3D Help
20: 34.3 Basic Properties: 3 j Symbol
For the polynomials P l see §18.3, and for the function Y l , m see §14.30.
34.3.19 P l 1 ( cos θ ) P l 2 ( cos θ ) = l ( 2 l + 1 ) ( l 1 l 2 l 0 0 0 ) 2 P l ( cos θ ) ,
34.3.20 Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) = l , m ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l + 1 ) 4 π ) 1 2 ( l 1 l 2 l m 1 m 2 m ) Y l , m ( θ , ϕ ) ¯ ( l 1 l 2 l 0 0 0 ) ,
34.3.21 0 π P l 1 ( cos θ ) P l 2 ( cos θ ) P l 3 ( cos θ ) sin θ d θ = 2 ( l 1 l 2 l 3 0 0 0 ) 2 ,
34.3.22 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) Y l 3 , m 3 ( θ , ϕ ) sin θ d θ d ϕ = ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l 3 + 1 ) 4 π ) 1 2 ( l 1 l 2 l 3 0 0 0 ) ( l 1 l 2 l 3 m 1 m 2 m 3 ) .