About the Project

negative%20definite

AdvancedHelp

(0.001 seconds)

31—40 of 211 matching pages

31: 9.9 Zeros
On the real line, Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) each have an infinite number of zeros, all of which are negative. …
9.9.6 a k = T ( 3 8 π ( 4 k 1 ) ) ,
9.9.7 Ai ( a k ) = ( 1 ) k 1 V ( 3 8 π ( 4 k 1 ) ) ,
9.9.8 a k = U ( 3 8 π ( 4 k 3 ) ) ,
9.9.9 Ai ( a k ) = ( 1 ) k 1 W ( 3 8 π ( 4 k 3 ) ) .
32: 8 Incomplete Gamma and Related
Functions
33: 28 Mathieu Functions and Hill’s Equation
34: 4.3 Graphics
Figure 4.3.2 illustrates the conformal mapping of the strip π < z < π onto the whole w -plane cut along the negative real axis, where w = e z and z = ln w (principal value). …
See accompanying text
Figure 4.3.3: ln ( x + i y ) (principal value). There is a branch cut along the negative real axis. Magnify 3D Help
35: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 36: 23 Weierstrass Elliptic and Modular
    Functions
    37: 18.39 Applications in the Physical Sciences
    The non-relativistic Schrödinger equation describing a single, bound (negative energy) electron, in an L 2 eigenstate of energy E is: … where s is a real, positive, scaling factor, and l a non-negative integer. As in this subsection both positive (repulsive) and negative (attractive) Coulomb interactions are discussed, the prefactor of Z / r in (18.39.43) has been set to + 1 , rather than the 1 of (18.39.28) implying that Z < 0 is an attractive interaction, Z > 0 being repulsive. … The polynomials P N ( l + 1 ) ( x ; 2 Z s , 2 Z s ) , for both positive and negative Z , define the Coulomb–Pollaczek polynomials (CP OP’s in what follows), see Yamani and Reinhardt (1975, Appendix B, and §IV). … Note that violation of the Favard inequality, l + 1 + ( 2 Z / s ) > 0 , possible when Z < 0 , results in a zero or negative weight function. …
    38: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    Let a 1 + a 2 + a 3 + 1 2 ( m + 1 ) = b 1 + b 2 ; one of the a j be a negative integer; ( b 1 a 1 ) , ( b 1 a 2 ) , ( b 1 a 3 ) , ( b 1 a 1 a 2 a 3 ) > 1 2 ( m 1 ) . …
    39: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • N. L. Lepe (1985) Functions on a parabolic cylinder with a negative integer index. Differ. Uravn. 21 (11), pp. 2001–2003, 2024 (Russian).
  • 40: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.