About the Project

Riemann%20hypothesis

AdvancedHelp

(0.002 seconds)

31—40 of 165 matching pages

31: 21.1 Special Notation
g , h positive integers.
𝛀 g × g complex, symmetric matrix with 𝛀 strictly positive definite, i.e., a Riemann matrix.
a b intersection index of a and b , two cycles lying on a closed surface. a b = 0 if a and b do not intersect. Otherwise a b gets an additive contribution from every intersection point. This contribution is 1 if the basis of the tangent vectors of the a and b cycles (§21.7(i)) at the point of intersection is positively oriented; otherwise it is 1 .
Uppercase boldface letters are g × g real or complex matrices. The main functions treated in this chapter are the Riemann theta functions θ ( 𝐳 | 𝛀 ) , and the Riemann theta functions with characteristics θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) . The function Θ ( ϕ | 𝐁 ) = θ ( ϕ / ( 2 π i ) | 𝐁 / ( 2 π i ) ) is also commonly used; see, for example, Belokolos et al. (1994, §2.5), Dubrovin (1981), and Fay (1973, Chapter 1).
32: 25.19 Tables
  • Abramowitz and Stegun (1964) tabulates: ζ ( n ) , n = 2 , 3 , 4 , , 20D (p. 811); Li 2 ( 1 x ) , x = 0 ( .01 ) 0.5 , 9D (p. 1005); f ( θ ) , θ = 15 ( 1 ) 30 ( 2 ) 90 ( 5 ) 180 , f ( θ ) + θ ln θ , θ = 0 ( 1 ) 15 , 6D (p. 1006). Here f ( θ ) denotes Clausen’s integral, given by the right-hand side of (25.12.9).

  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ζ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ζ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 33: 25.2 Definition and Expansions
    §25.2 Definition and Expansions
    Elsewhere ζ ( s ) is defined by analytic continuation. …
    §25.2(ii) Other Infinite Series
    §25.2(iii) Representations by the Euler–Maclaurin Formula
    §25.2(iv) Infinite Products
    34: 25.11 Hurwitz Zeta Function
    The Riemann zeta function is a special case:
    25.11.2 ζ ( s , 1 ) = ζ ( s ) .
    See accompanying text
    Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
    25.11.11 ζ ( s , 1 2 ) = ( 2 s 1 ) ζ ( s ) , s 1 .
    25.11.41 ζ ( s , a + 1 ) = ζ ( s ) s ζ ( s + 1 ) a + O ( a 2 ) .
    35: Sidebar 21.SB2: A two-phase solution of the Kadomtsev–Petviashvili equation (21.9.3)
    Such a solution is given in terms of a Riemann theta function with two phases. …
    36: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • J. P. Keating (1999) Periodic Orbits, Spectral Statistics, and the Riemann Zeros. In Supersymmetry and Trace Formulae: Chaos and Disorder, J. P. Keating, D. E. Khmelnitskii, and I. V. Lerner (Eds.), pp. 1–15.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • 37: 20 Theta Functions
    Chapter 20 Theta Functions
    38: Bibliography R
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • B. Riemann (1859) Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monats. Berlin Akad. November 1859, pp. 671–680.
  • B. Riemann (1899) Elliptische Functionen. Teubner, Leipzig.
  • B. Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen.
  • 39: Bibliography D
  • N. G. de Bruijn (1937) Integralen voor de ζ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • B. Deconinck and M. van Hoeij (2001) Computing Riemann matrices of algebraic curves. Phys. D 152/153, pp. 28–46.
  • P. A. Deift (1998) Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, Vol. 3, New York University Courant Institute of Mathematical Sciences, New York.
  • T. M. Dunster (2006) Uniform asymptotic approximations for incomplete Riemann zeta functions. J. Comput. Appl. Math. 190 (1-2), pp. 339–353.
  • 40: 5.16 Sums
    5.16.2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) = 1 2 ψ ′′ ( 1 ) .