About the Project

tangent function

AdvancedHelp

(0.003 seconds)

1—10 of 100 matching pages

1: 4.1 Special Notation
k , m , n integers.
The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
2: 4.32 Inequalities
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.4 arctan x 1 2 π tanh x , x 0 .
3: 4.14 Definitions and Periodicity
4.14.4 tan z = sin z cos z ,
4.14.7 cot z = cos z sin z = 1 tan z .
The functions tan z , csc z , sec z , and cot z are meromorphic, and the locations of their zeros and poles follow from (4.14.4) to (4.14.7). …
4.14.10 tan ( z + k π ) = tan z .
4: 4.28 Definitions and Periodicity
4.28.4 tanh z = sinh z cosh z ,
4.28.7 coth z = 1 tanh z .
4.28.10 tan ( i z ) = i tanh z ,
The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . …
5: 4.31 Special Values and Limits
4.31.2 lim z 0 tanh z z = 1 ,
6: 4.20 Derivatives and Differential Equations
4.20.3 d d z tan z = sec 2 z ,
4.20.5 d d z sec z = sec z tan z ,
4.20.14 w = ( 1 / a ) tan ( a z + c ) ,
7: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.3: tanh x and coth x . Magnify
See accompanying text
Figure 4.29.4: Principal values of arctanh x and arccoth x . … Magnify
§4.29(ii) Complex Arguments
The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
8: 4.35 Identities
4.35.12 sech 2 z = 1 tanh 2 z ,
4.35.25 tanh ( z ) = tanh z .
4.35.26 sinh ( 2 z ) = 2 sinh z cosh z = 2 tanh z 1 tanh 2 z ,
4.35.28 tanh ( 2 z ) = 2 tanh z 1 + tanh 2 z ,
4.35.36 tanh z = sinh ( 2 x ) + i sin ( 2 y ) cosh ( 2 x ) + cos ( 2 y ) ,
9: 4.21 Identities
4.21.10 tan u ± tan v = sin ( u ± v ) cos u cos v ,
4.21.13 sec 2 z = 1 + tan 2 z ,
4.21.26 tan ( z ) = tan z .
4.21.27 sin ( 2 z ) = 2 sin z cos z = 2 tan z 1 + tan 2 z ,
4.21.29 tan ( 2 z ) = 2 tan z 1 tan 2 z = 2 cot z cot 2 z 1 = 2 cot z tan z .
10: 22.10 Maclaurin Series
22.10.7 sn ( z , k ) = tanh z k 2 4 ( z sinh z cosh z ) sech 2 z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
22.10.9 dn ( z , k ) = sech z + k 2 4 ( z + sinh z cosh z ) tanh z sech z + O ( k 4 ) .