About the Project

spheroidal coordinates

AdvancedHelp

(0.001 seconds)

7 matching pages

1: 30.14 Wave Equation in Oblate Spheroidal Coordinates
§30.14 Wave Equation in Oblate Spheroidal Coordinates
§30.14(i) Oblate Spheroidal Coordinates
§30.14(ii) Metric Coefficients
§30.14(iii) Laplacian
2: 30.13 Wave Equation in Prolate Spheroidal Coordinates
§30.13 Wave Equation in Prolate Spheroidal Coordinates
§30.13(i) Prolate Spheroidal Coordinates
§30.13(ii) Metric Coefficients
§30.13(iii) Laplacian
3: 30.1 Special Notation
4: 30.2 Differential Equations
In applications involving prolate spheroidal coordinates γ 2 is positive, in applications involving oblate spheroidal coordinates γ 2 is negative; see §§30.13, 30.14. …
5: Bibliography H
  • M. H. Halley, D. Delande, and K. T. Taylor (1993) The combination of R -matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr. J. Phys. B 26 (12), pp. 1775–1790.
  • S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King (1970) Tables of Radial Spheroidal Wave Functions, Vols. 1-3, Prolate, m = 0 , 1 , 2 ; Vols. 4-6, Oblate, m = 0 , 1 , 2 . Technical report Naval Research Laboratory, Washington, D.C..
  • C. Hunter and B. Guerrieri (1982) The eigenvalues of the angular spheroidal wave equation. Stud. Appl. Math. 66 (3), pp. 217–240.
  • 6: 31.17 Physical Applications
    Introduce elliptic coordinates z 1 and z 2 on S 2 . Then
    31.17.2 x s 2 z k + x t 2 z k 1 + x u 2 z k a = 0 , k = 1 , 2 ,
    More applications—including those of generalized spheroidal wave functions and confluent Heun functions in mathematical physics, astrophysics, and the two-center problem in molecular quantum mechanics—can be found in Leaver (1986) and Slavyanov and Lay (2000, Chapter 4). …
    7: Bibliography M
  • P. L. Marston (1999) Catastrophe optics of spheroidal drops and generalized rainbows. J. Quantit. Spec. and Rad. Trans. 63, pp. 341–351.
  • J. W. Miles (1975) Asymptotic approximations for prolate spheroidal wave functions. Studies in Appl. Math. 54 (4), pp. 315–349.
  • W. Miller (1974) Lie theory and separation of variables. I: Parabolic cylinder coordinates. SIAM J. Math. Anal. 5 (4), pp. 626–643.
  • P. Moon and D. E. Spencer (1971) Field Theory Handbook. Including Coordinate Systems, Differential Equations and Their Solutions. 2nd edition, Springer-Verlag, Berlin.
  • D. Müller, B. G. Kelly, and J. J. O’Brien (1994) Spheroidal eigenfunctions of the tidal equation. Phys. Rev. Lett. 73 (11), pp. 1557–1560.