About the Project

sphero-conal%20coordinates

AdvancedHelp

(0.002 seconds)

11—20 of 134 matching pages

11: 30.13 Wave Equation in Prolate Spheroidal Coordinates
§30.13 Wave Equation in Prolate Spheroidal Coordinates
§30.13(i) Prolate Spheroidal Coordinates
§30.13(ii) Metric Coefficients
§30.13(iii) Laplacian
12: 10.73 Physical Applications
In cylindrical coordinates r , ϕ , z , (§1.5(ii) we have … See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … On separation of variables into cylindrical coordinates, the Bessel functions J n ( x ) , and modified Bessel functions I n ( x ) and K n ( x ) , all appear. … The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …
13: 28.32 Mathematical Applications
§28.32(i) Elliptical Coordinates and an Integral Relationship
If the boundary conditions in a physical problem relate to the perimeter of an ellipse, then elliptical coordinates are convenient. …
§28.32(ii) Paraboloidal Coordinates
The general paraboloidal coordinate system is linked with Cartesian coordinates via …
14: 14.30 Spherical and Spheroidal Harmonics
As an example, Laplace’s equation 2 W = 0 in spherical coordinates1.5(ii)): … Here, in spherical coordinates, L 2 is the squared angular momentum operator: …
15: 8 Incomplete Gamma and Related
Functions
16: 28 Mathieu Functions and Hill’s Equation
17: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: 23 Weierstrass Elliptic and Modular
    Functions
    19: 32.6 Hamiltonian Structure
    P I P VI  can be written as a Hamiltonian system …
    32.6.3 q = p ,
    32.6.4 p = 6 q 2 + z .
    32.6.5 σ = H I ( q , p , z ) ,
    32.6.7 q = σ ,
    20: 14.19 Toroidal (or Ring) Functions
    §14.19(i) Introduction
    This form of the differential equation arises when Laplace’s equation is transformed into toroidal coordinates ( η , θ , ϕ ) , which are related to Cartesian coordinates ( x , y , z ) by …