About the Project
NIST

special values

AdvancedHelp

(0.002 seconds)

1—10 of 110 matching pages

1: 18.6 Symmetry, Special Values, and Limits to Monomials
§18.6 Symmetry, Special Values, and Limits to Monomials
§18.6(i) Symmetry and Special Values
Table 18.6.1: Classical OP’s: symmetry and special values.
p n ( x ) p n ( - x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
2: 4.31 Special Values and Limits
§4.31 Special Values and Limits
3: 4.4 Special Values and Limits
§4.4 Special Values and Limits
§4.4(i) Logarithms
§4.4(ii) Powers
4: 4.17 Special Values and Limits
§4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
5: 23.17 Elementary Properties
§23.17(i) Special Values
6: 22.5 Special Values
§22.5 Special Values
§22.5(i) Special Values of z
Table 22.5.1: Jacobian elliptic function values, together with derivatives or residues, for special values of the variable.
z
Table 22.5.2: Other special values of Jacobian elliptic functions.
z
7: 5.4 Special Values and Extrema
§5.4 Special Values and Extrema
§5.4(ii) Psi Function
5.4.19 ψ ( p q ) = - γ - ln q - π 2 cot ( π p q ) + 1 2 k = 1 q - 1 cos ( 2 π k p q ) ln ( 2 - 2 cos ( 2 π k q ) ) .
8: 8.4 Special Values
§8.4 Special Values
9: 26.14 Permutations: Order Notation
§26.14(iv) Special Values
10: 15.17 Mathematical Applications
For special values of α and β there are many group-theoretic interpretations. …