About the Project

single

AdvancedHelp

(0.001 seconds)

21—30 of 55 matching pages

21: Bibliography D
  • A. R. DiDonato and A. H. Morris (1987) Algorithm 654: Fortran subroutines for computing the incomplete gamma function ratios and their inverses. ACM Trans. Math. Software 13 (3), pp. 318–319.
  • A. R. DiDonato and A. H. Morris (1992) Algorithm 708: Significant digit computation of the incomplete beta function ratios. ACM Trans. Math. Software 18 (3), pp. 360–373.
  • R. McD. Dodds and G. Wiechers (1972) Vector coupling coefficients as products of prime factors. Comput. Phys. Comm. 4 (2), pp. 268–274.
  • O. Dragoun and G. Heuser (1971) A program to calculate internal conversion coefficients for all atomic shells without screening. Comput. Phys. Comm. 2 (7), pp. 427–432.
  • 22: Bibliography I
    23: Bibliography Z
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • 24: Bibliography S
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • M. J. Seaton (2002c) NUMER, a code for Numerov integrations of Coulomb functions. Comput. Phys. Comm. 146 (2), pp. 254–260.
  • J. Shapiro (1970) Arbitrary 3 n j symbols for SU ( 2 ) . Comput. Phys. Comm. 1 (3), pp. 207–215.
  • W. V. Snyder (1993) Algorithm 723: Fresnel integrals. ACM Trans. Math. Software 19 (4), pp. 452–456.
  • B. Sommer and J. G. Zabolitzky (1979) On numerical Bessel transformation. Comput. Phys. Comm. 16 (3), pp. 383–387.
  • 25: Bibliography K
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.
  • K. S. Kölbig (1981) A Program for Computing the Conical Functions of the First Kind P 1 / 2 + i τ m ( x ) for m = 0 and m = 1 . Comput. Phys. Comm. 23 (1), pp. 51–61.
  • 26: Bibliography L
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • D. A. Levine (1969) Algorithm 344: Student’s t-distribution [S14]. Comm. ACM 12 (1), pp. 37–38.
  • A. E. Lynas-Gray (1993) VOIGTL – A fast subroutine for Voigt function evaluation on vector processors. Comput. Phys. Comm. 75 (1-2), pp. 135–142.
  • 27: 19.28 Integrals of Elliptic Integrals
    To replace a single component of 𝐳 in R a ( 𝐛 ; 𝐳 ) by several different variables (as in (19.28.6)), see Carlson (1963, (7.9)). …
    28: 30.14 Wave Equation in Oblate Spheroidal Coordinates
    In most applications the solution w has to be a single-valued function of ( x , y , z ) , which requires μ = m (a nonnegative integer). …
    29: 36.12 Uniform Approximation of Integrals
    For K = 1 , with a single parameter y , let the two critical points of f ( u ; y ) be denoted by u ± ( y ) , with u + > u for those values of y for which these critical points are real. …
    30: Bibliography B
  • A. R. Barnett, D. H. Feng, J. W. Steed, and L. J. B. Goldfarb (1974) Coulomb wave functions for all real η and ρ . Comput. Phys. Comm. 8 (5), pp. 377–395.
  • R. F. Boisvert and B. V. Saunders (1992) Portable vectorized software for Bessel function evaluation. ACM Trans. Math. Software 18 (4), pp. 456–469.
  • W. J. Braithwaite (1973) Associated Legendre polynomials, ordinary and modified spherical harmonics. Comput. Phys. Comm. 5 (5), pp. 390–394.
  • P. G. Burke (1970) A program to calculate a general recoupling coefficient. Comput. Phys. Comm. 1 (4), pp. 241–250.