About the Project

sine function

AdvancedHelp

(0.016 seconds)

11—20 of 297 matching pages

11: 10.12 Generating Function and Associated Series
§10.12 Generating Function and Associated Series
cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z sin θ ) = 2 k = 0 J 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) ,
sin z = 2 J 1 ( z ) 2 J 3 ( z ) + 2 J 5 ( z ) ,
1 2 z sin z = 4 J 2 ( z ) 16 J 4 ( z ) + 36 J 6 ( z ) .
12: 4.40 Integrals
4.40.1 sinh x d x = cosh x ,
4.40.2 cosh x d x = sinh x ,
4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
4.40.14 arccsch x d x = x arccsch x + arcsinh x , 0 < x < ,
13: 6.11 Relations to Other Functions
14: 4.34 Derivatives and Differential Equations
4.34.1 d d z sinh z = cosh z ,
4.34.2 d d z cosh z = sinh z ,
4.34.12 w = ( 1 / a ) sinh ( a z + c ) ,
15: 4.20 Derivatives and Differential Equations
4.20.1 d d z sin z = cos z ,
4.20.2 d d z cos z = sin z ,
4.20.7 d n d z n sin z = sin ( z + 1 2 n π ) ,
4.20.12 w = A cos ( a z ) + B sin ( a z ) ,
4.20.13 w = ( 1 / a ) sin ( a z + c ) ,
16: 4.31 Special Values and Limits
4.31.1 lim z 0 sinh z z = 1 ,
17: 23.11 Integral Representations
23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
18: 6.2 Definitions and Interrelations
Si ( z ) is an odd entire function. …
§6.2(iii) Auxiliary Functions
6.2.18 g ( z ) = Ci ( z ) cos z si ( z ) sin z .
19: 14.25 Integral Representations
14.25.1 P ν μ ( z ) = ( z 2 1 ) μ / 2 2 ν Γ ( μ ν ) Γ ( ν + 1 ) 0 ( sinh t ) 2 ν + 1 ( z + cosh t ) ν + μ + 1 d t , μ > ν > 1 ,
14.25.2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 ,
20: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.1: sinh x and cosh x . Magnify
§4.29(ii) Complex Arguments
The conformal mapping w = sinh z is obtainable from Figure 4.15.7 by rotating both the w -plane and the z -plane through an angle 1 2 π , compare (4.28.8). The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …