About the Project

sigma function

AdvancedHelp

(0.005 seconds)

11—20 of 73 matching pages

11: 23.3 Differential Equations
β–ΊAs functions of g 2 ⁑ and g 3 ⁑ , ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) and ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) are meromorphic and Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) is entire. …
12: 27.2 Functions
β–ΊNote that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . … β–Ί
Table 27.2.2: Functions related to division.
β–Ί β–Ίβ–Ί
n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n )
β–Ί
13: 23.12 Asymptotic Approximations
β–Ί
23.12.3 Οƒ ⁑ ( z ) = 2 ⁒ Ο‰ 1 Ο€ ⁒ exp ⁑ ( Ο€ 2 ⁒ z 2 24 ⁒ Ο‰ 1 2 ) ⁒ sin ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) ⁒ ( 1 ( Ο€ 2 ⁒ z 2 Ο‰ 1 2 4 ⁒ sin 2 ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) ) ⁒ q 2 + O ⁑ ( q 4 ) ) ,
14: 23.9 Laurent and Other Power Series
β–Ί
23.9.7 Οƒ ⁑ ( z ) = m , n = 0 a m , n ⁒ ( 10 ⁒ c 2 ) m ⁒ ( 56 ⁒ c 3 ) n ⁒ z 4 ⁒ m + 6 ⁒ n + 1 ( 4 ⁒ m + 6 ⁒ n + 1 ) ! ,
15: 27.4 Euler Products and Dirichlet Series
β–Ί
27.4.11 n = 1 Οƒ Ξ± ⁑ ( n ) ⁒ n s = ΞΆ ⁑ ( s ) ⁒ ΞΆ ⁑ ( s Ξ± ) , ⁑ s > max ⁑ ( 1 , 1 + ⁑ Ξ± ) ,
16: 23.8 Trigonometric Series and Products
β–Ί
23.8.6 Οƒ ⁑ ( z ) = 2 ⁒ Ο‰ 1 Ο€ ⁒ exp ⁑ ( Ξ· 1 ⁒ z 2 2 ⁒ Ο‰ 1 ) ⁒ sin ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) ⁒ n = 1 1 2 ⁒ q 2 ⁒ n ⁒ cos ⁑ ( Ο€ ⁒ z / Ο‰ 1 ) + q 4 ⁒ n ( 1 q 2 ⁒ n ) 2 ,
β–Ί
23.8.7 Οƒ ⁑ ( z ) = 2 ⁒ Ο‰ 1 Ο€ ⁒ exp ⁑ ( Ξ· 1 ⁒ z 2 2 ⁒ Ο‰ 1 ) ⁒ sin ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) ⁒ n = 1 sin ⁑ ( Ο€ ⁒ ( 2 ⁒ n ⁒ Ο‰ 3 + z ) / ( 2 ⁒ Ο‰ 1 ) ) ⁒ sin ⁑ ( Ο€ ⁒ ( 2 ⁒ n ⁒ Ο‰ 3 z ) / ( 2 ⁒ Ο‰ 1 ) ) sin 2 ⁑ ( Ο€ ⁒ n ⁒ Ο‰ 3 / Ο‰ 1 ) .
17: 33.10 Limiting Forms for Large ρ or Large | η |
β–Ί
§33.10(i) Large ρ
β–Ί
§33.10(ii) Large Positive Ξ·
β–Ί
Οƒ 0 ⁑ ( Ξ· ) = Ξ· ⁒ ( ln ⁑ Ξ· 1 ) + 1 4 ⁒ Ο€ + o ⁑ ( 1 ) ,
β–Ί
§33.10(iii) Large Negative Ξ·
β–Ί
Οƒ 0 ⁑ ( Ξ· ) = Ξ· ⁒ ( ln ⁑ ( Ξ· ) 1 ) 1 4 ⁒ Ο€ + o ⁑ ( 1 ) ,
18: 33.2 Definitions and Basic Properties
β–Ί
33.2.7 H β„“ ± ⁑ ( Ξ· , ρ ) = ( βˆ“ i ) β„“ ⁒ e ( Ο€ ⁒ Ξ· / 2 ) ± i ⁒ Οƒ β„“ ⁑ ( Ξ· ) ⁒ W βˆ“ i ⁒ Ξ· , β„“ + 1 2 ⁑ ( βˆ“ 2 ⁒ i ⁒ ρ ) ,
β–Ί
33.2.9 ΞΈ β„“ ⁑ ( Ξ· , ρ ) = ρ Ξ· ⁒ ln ⁑ ( 2 ⁒ ρ ) 1 2 ⁒ β„“ ⁒ Ο€ + Οƒ β„“ ⁑ ( Ξ· ) ,
β–Ί
33.2.10 Οƒ β„“ ⁑ ( Ξ· ) = ph ⁑ Ξ“ ⁑ ( β„“ + 1 + i ⁒ Ξ· ) ,
β–ΊAlso, e βˆ“ i ⁒ Οƒ β„“ ⁑ ( Ξ· ) ⁒ H β„“ ± ⁑ ( Ξ· , ρ ) are analytic functions of Ξ· when < Ξ· < . …
19: 27.21 Tables
β–ΊGlaisher (1940) contains four tables: Table I tabulates, for all n 10 4 : (a) the canonical factorization of n into powers of primes; (b) the Euler totient Ο• ⁑ ( n ) ; (c) the divisor function d ⁑ ( n ) ; (d) the sum Οƒ ⁑ ( n ) of these divisors. …Table III lists all solutions n 10 4 of the equation d ⁑ ( n ) = m , and Table IV lists all solutions n of the equation Οƒ ⁑ ( n ) = m for all m 10 4 . …6 lists Ο• ⁑ ( n ) , d ⁑ ( n ) , and Οƒ ⁑ ( n ) for n 1000 ; Table 24. …
20: 13.7 Asymptotic Expansions for Large Argument
β–Ί
13.7.6 C n = 1 , Ο‡ ⁒ ( n ) , ( Ο‡ ⁒ ( n ) + Οƒ ⁒ Ξ½ 2 ⁒ n ) ⁒ Ξ½ n ,