About the Project

separable%20Gauss%20sum

AdvancedHelp

(0.002 seconds)

11—20 of 506 matching pages

11: 20.11 Generalizations and Analogs
§20.11(i) Gauss Sum
For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by
20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
Similar identities can be constructed for F 1 2 ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ( 1 6 , 5 6 ; 1 ; k 2 ) . …
12: 36.5 Stokes Sets
36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
This consists of three separate cusp-edged sheets connected to the cusp-edged sheets of the bifurcation set, and related by rotation about the z -axis by 2 π / 3 . …
13: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1992) Uniform asymptotic expansions for oblate spheroidal functions I: Positive separation parameter λ . Proc. Roy. Soc. Edinburgh Sect. A 121 (3-4), pp. 303–320.
  • T. M. Dunster (1995) Uniform asymptotic expansions for oblate spheroidal functions II: Negative separation parameter λ . Proc. Roy. Soc. Edinburgh Sect. A 125 (4), pp. 719–737.
  • 14: 8 Incomplete Gamma and Related
    Functions
    15: 28 Mathieu Functions and Hill’s Equation
    16: 3.8 Nonlinear Equations
    3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
    are well separated but extremely ill-conditioned. Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ) × 10 7 .
    17: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: 23 Weierstrass Elliptic and Modular
    Functions
    19: 35.12 Software
    References to research software that is available in other ways is listed separately. …
    20: Vadim B. Kuznetsov
    Kuznetsov published papers on special functions and orthogonal polynomials, the quantum scattering method, integrable discrete many-body systems, separation of variables, Bäcklund transformation techniques, and integrability in classical and quantum mechanics. …