About the Project

q-multinomial%20coefficient

AdvancedHelp

(0.002 seconds)

11—20 of 293 matching pages

11: 23.9 Laurent and Other Power Series
β–Ί
c 2 = 1 20 ⁒ g 2 ⁑ ,
β–ΊExplicit coefficients c n in terms of c 2 and c 3 are given up to c 19 in Abramowitz and Stegun (1964, p. 636). … β–Ί
23.9.7 Οƒ ⁑ ( z ) = m , n = 0 a m , n ⁒ ( 10 ⁒ c 2 ) m ⁒ ( 56 ⁒ c 3 ) n ⁒ z 4 ⁒ m + 6 ⁒ n + 1 ( 4 ⁒ m + 6 ⁒ n + 1 ) ! ,
β–Ίwhere a 0 , 0 = 1 , a m , n = 0 if either m or n < 0 , and β–Ί
23.9.8 a m , n = 3 ⁒ ( m + 1 ) ⁒ a m + 1 , n 1 + 16 3 ⁒ ( n + 1 ) ⁒ a m 2 , n + 1 1 3 ⁒ ( 2 ⁒ m + 3 ⁒ n 1 ) ⁒ ( 4 ⁒ m + 6 ⁒ n 1 ) ⁒ a m 1 , n .
12: 8 Incomplete Gamma and Related
Functions
13: 28 Mathieu Functions and Hill’s Equation
14: 26.5 Lattice Paths: Catalan Numbers
β–Ί
26.5.1 C ⁑ ( n ) = 1 n + 1 ⁒ ( 2 ⁒ n n ) = 1 2 ⁒ n + 1 ⁒ ( 2 ⁒ n + 1 n ) = ( 2 ⁒ n n ) ( 2 ⁒ n n 1 ) = ( 2 ⁒ n 1 n ) ( 2 ⁒ n 1 n + 1 ) .
β–Ί
Table 26.5.1: Catalan numbers.
β–Ί β–Ίβ–Ίβ–Ί
n C ⁑ ( n ) n C ⁑ ( n ) n C ⁑ ( n )
6 132 13 7 42900 20 65641 20420
β–Ί
β–Ί
26.5.5 C ⁑ ( n + 1 ) = k = 0 n / 2 ( n 2 ⁒ k ) ⁒ 2 n 2 ⁒ k ⁒ C ⁑ ( k ) .
15: Bibliography N
β–Ί
  • National Bureau of Standards (1944) Tables of Lagrangian Interpolation Coefficients. Columbia University Press, New York.
  • β–Ί
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • β–Ί
  • National Bureau of Standards (1967) Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors. 2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • β–Ί
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • β–Ί
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 16: 26.9 Integer Partitions: Restricted Number and Part Size
    β–Ί
    26.9.4 [ m n ] q = j = 1 n 1 q m n + j 1 q j , n 0 ,
    β–Ίis the Gaussian polynomial (or q -binomial coefficient); see also §§17.2(i)17.2(ii). … β–Ί
    26.9.5 n = 0 p k ⁑ ( n ) ⁒ q n = j = 1 k 1 1 q j = 1 + m = 1 [ k + m 1 m ] q ⁒ q m ,
    β–Ί β–Ί
    26.9.7 m , n = 0 p k ⁑ ( m , n ) ⁒ x k ⁒ q n = 1 + k = 1 [ m + k k ] q ⁒ x k = j = 0 m 1 1 x ⁒ q j .
    17: 8.26 Tables
    β–Ί
  • Khamis (1965) tabulates P ⁑ ( a , x ) for a = 0.05 ⁒ ( .05 ) ⁒ 10 ⁒ ( .1 ) ⁒ 20 ⁒ ( .25 ) ⁒ 70 , 0.0001 x 250 to 10D.

  • β–Ί
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ⁒ ( .01 ) ⁒ 2 to 7D; also ( x + n ) ⁒ e x ⁒ E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ⁒ ( .01 ) ⁒ 0.1 ⁒ ( .05 ) ⁒ 0.5 to 6S.

  • β–Ί
  • Pagurova (1961) tabulates E n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 ⁒ ( .01 ) ⁒ 2 ⁒ ( .1 ) ⁒ 10 to 4-9S; e x ⁒ E n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 10 , x = 10 ⁒ ( .1 ) ⁒ 20 to 7D; e x ⁒ E p ⁑ ( x ) for p = 0 ⁒ ( .1 ) ⁒ 1 , x = 0.01 ⁒ ( .01 ) ⁒ 7 ⁒ ( .05 ) ⁒ 12 ⁒ ( .1 ) ⁒ 20 to 7S or 7D.

  • β–Ί
  • Zhang and Jin (1996, Table 19.1) tabulates E n ⁑ ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ⁒ ( .1 ) ⁒ 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: 23 Weierstrass Elliptic and Modular
    Functions
    19: 5.11 Asymptotic Expansions
    β–Ίwhere … β–Ί
    5.11.5 g k = 2 ⁒ ( 1 2 ) k ⁒ a 2 ⁒ k ,
    β–Ίwhere a 0 = 1 2 ⁒ 2 and …Wrench (1968) gives exact values of g k up to g 20 . … β–Ί
    5.11.17 G k ⁑ ( a , b ) = ( a b k ) ⁒ B k ( a b + 1 ) ⁑ ( a ) ,
    20: 12.11 Zeros
    β–ΊThe first two coefficients are given by β–Ί
    12.11.5 p 0 ⁑ ( ΢ ) = t ⁒ ( ΢ ) ,
    β–Ί
    12.11.6 p 1 ⁑ ( ΢ ) = t 3 6 ⁒ t 24 ⁒ ( t 2 1 ) 2 + 5 48 ⁒ ( ( t 2 1 ) ⁒ ΢ 3 ) 1 2 .
    β–Ί
    12.11.9 u a , 1 2 1 2 ⁒ ΞΌ ⁒ ( 1 1.85575 708 ⁒ ΞΌ 4 / 3 0.34438 34 ⁒ ΞΌ 8 / 3 0.16871 5 ⁒ ΞΌ 4 0.11414 ⁒ ΞΌ 16 / 3 0.0808 ⁒ ΞΌ 20 / 3 β‹― ) ,
    β–Ίwhere the numerical coefficients have been rounded off. …