q-Stirling numbers
(0.001 seconds)
1—10 of 223 matching pages
1: 24.1 Special Notation
…
►
Bernoulli Numbers and Polynomials
►The origin of the notation , , is not clear. … ►Euler Numbers and Polynomials
… ►Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations , , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …2: 17.3 -Elementary and -Special Functions
…
►
§17.3(iii) Bernoulli Polynomials; Euler and Stirling Numbers
… ►-Euler Numbers
… ►-Stirling Numbers
►
17.3.9
…
►The are always polynomials in , and the are polynomials in for .
…
3: 26.11 Integer Partitions: Compositions
…
►
denotes the number of compositions of , and is the number of compositions into exactly
parts.
is the number of compositions of with no 1’s, where again .
…
►
26.11.1
…
►The Fibonacci numbers are determined recursively by
…
►Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
4: 27.18 Methods of Computation: Primes
§27.18 Methods of Computation: Primes
►An overview of methods for precise counting of the number of primes not exceeding an arbitrary integer is given in Crandall and Pomerance (2005, §3.7). …An analytic approach using a contour integral of the Riemann zeta function (§25.2(i)) is discussed in Borwein et al. (2000). … ►These algorithms are used for testing primality of Mersenne numbers, , and Fermat numbers, . …5: 26.6 Other Lattice Path Numbers
§26.6 Other Lattice Path Numbers
… ►Delannoy Number
… ►Motzkin Number
… ►Narayana Number
… ►§26.6(iv) Identities
…6: 24.15 Related Sequences of Numbers
§24.15 Related Sequences of Numbers
►§24.15(i) Genocchi Numbers
… ►§24.15(ii) Tangent Numbers
… ►§24.15(iii) Stirling Numbers
… ►§24.15(iv) Fibonacci and Lucas Numbers
…7: 26.5 Lattice Paths: Catalan Numbers
§26.5 Lattice Paths: Catalan Numbers
►§26.5(i) Definitions
► is the Catalan number. … ►§26.5(ii) Generating Function
… ►§26.5(iii) Recurrence Relations
…8: 26.14 Permutations: Order Notation
…
►As an example, is an element of The inversion number is the number of pairs of elements for which the larger element precedes the smaller:
…
►
►The Eulerian number, denoted , is the number of permutations in with exactly descents.
…The Eulerian number
is equal to the number of permutations in with exactly excedances.
…
►