About the Project

positive sums

AdvancedHelp

(0.004 seconds)

11—20 of 141 matching pages

11: Bibliography
  • R. Askey and G. Gasper (1976) Positive Jacobi polynomial sums. II. Amer. J. Math. 98 (3), pp. 709–737.
  • 12: 27.4 Euler Products and Dirichlet Series
    27.4.5 n = 1 μ ( n ) n s = 1 ζ ( s ) , s > 1 ,
    27.4.6 n = 1 ϕ ( n ) n s = ζ ( s 1 ) ζ ( s ) , s > 2 ,
    27.4.7 n = 1 λ ( n ) n s = ζ ( 2 s ) ζ ( s ) , s > 1 ,
    27.4.10 n = 1 d k ( n ) n s = ( ζ ( s ) ) k , s > 1 ,
    27.4.11 n = 1 σ α ( n ) n s = ζ ( s ) ζ ( s α ) , s > max ( 1 , 1 + α ) ,
    13: Errata
    For some classical polynomials we give some positive sums and discriminants. …
    14: 27.7 Lambert Series as Generating Functions
    27.7.1 n = 1 f ( n ) x n 1 x n .
    27.7.2 n = 1 f ( n ) x n 1 x n = n = 1 d | n f ( d ) x n .
    27.7.3 n = 1 μ ( n ) x n 1 x n = x ,
    27.7.4 n = 1 ϕ ( n ) x n 1 x n = x ( 1 x ) 2 ,
    27.7.5 n = 1 n α x n 1 x n = n = 1 σ α ( n ) x n ,
    15: 26.9 Integer Partitions: Restricted Number and Part Size
    where the inner sum is taken over all positive divisors of t that are less than or equal to k . …
    16: 24.14 Sums
    In the next identity, valid for n 4 , the sum is taken over all positive integers j , k , , m with j + k + + m = n . …
    17: 27.5 Inversion Formulas
    27.5.1 h ( n ) = d | n f ( d ) g ( n d ) ,
    27.5.2 d | n μ ( d ) = 1 n ,
    27.5.3 g ( n ) = d | n f ( d ) f ( n ) = d | n g ( d ) μ ( n d ) .
    27.5.4 n = d | n ϕ ( d ) ϕ ( n ) = d | n d μ ( n d ) ,
    27.5.5 ln n = d | n Λ ( d ) Λ ( n ) = d | n ( ln d ) μ ( n d ) .
    18: 27.2 Functions
    27.2.6 ϕ k ( n ) = ( m , n ) = 1 m k ,
    the sum of the k th powers of the positive integers m n that are relatively prime to n .
    27.2.7 ϕ ( n ) = ϕ 0 ( n ) .
    27.2.9 d ( n ) = d | n 1
    27.2.10 σ α ( n ) = d | n d α ,
    19: 27.11 Asymptotic Formulas: Partial Sums
    27.11.1 n x f ( n ) = F ( x ) + O ( g ( x ) ) ,
    27.11.2 n x d ( n ) = x ln x + ( 2 γ 1 ) x + O ( x ) ,
    27.11.3 n x d ( n ) n = 1 2 ( ln x ) 2 + 2 γ ln x + O ( 1 ) ,
    27.11.4 n x σ 1 ( n ) = π 2 12 x 2 + O ( x ln x ) .
    27.11.5 n x σ α ( n ) = ζ ( α + 1 ) α + 1 x α + 1 + O ( x β ) , α > 0 , α 1 , β = max ( 1 , α ) .
    20: 26.15 Permutations: Matrix Notation
    where the sum is over 1 g < k n and n h > 1 . …
    26.15.3 R ( x , B ) = j = 0 n r j ( B ) x j .
    26.15.7 N ( x , B ) = k = 0 n r k ( B ) ( n k ) ! ( x 1 ) k .
    26.15.11 k = 0 n r n k ( B ) ( x k + 1 ) k = j = 1 n ( x + b j j + 1 ) .
    26.15.12 k = 0 n r n k ( B ) ( x k + 1 ) k = x n ,