About the Project

least%20squares%20approximations

AdvancedHelp

(0.003 seconds)

11—20 of 311 matching pages

11: 7.24 Approximations
§7.24 Approximations
§7.24(i) Approximations in Terms of Elementary Functions
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody (1968) gives minimax rational approximations for the Fresnel integrals (maximum relative precision 19S); for a Fortran algorithm and comments see Snyder (1993).

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • 12: 26.10 Integer Partitions: Other Restrictions
    p ( 𝒟 k , n ) denotes the number of partitions of n into parts with difference at least k . p ( 𝒟 3 , n ) denotes the number of partitions of n into parts with difference at least 3, except that multiples of 3 must differ by at least 6. …
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    p ( 𝒟 , n ) p ( 𝒟 2 , n ) p ( 𝒟 2 , T , n ) p ( 𝒟 3 , n )
    20 64 31 20 18
    13: 1.11 Zeros of Polynomials
    Every monic (coefficient of highest power is one) polynomial of odd degree with real coefficients has at least one real zero with sign opposite to that of the constant term. A monic polynomial of even degree with real coefficients has at least two zeros of opposite signs when the constant term is negative. … The square roots are chosen so that … Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . …
    14: 25.20 Approximations
    §25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 15: 6.20 Approximations
    §6.20 Approximations
    §6.20(i) Approximations in Terms of Elementary Functions
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • 16: 36.5 Stokes Sets
    In the following subsections, only Stokes sets involving at least one real saddle are included unless stated otherwise. …
    36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
    36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
    17: Mathematical Introduction
    complex plane (excluding infinity).
    sup least upper bound (supremum).
    ( a , b ] or [ a , b ) half-closed intervals.
    lim inf least limit point.
    All of the special function chapters contain sections that describe available methods for computing the main functions in the chapter, and most also provide references to numerical tables of, and approximations for, these functions. … In referring to the numerical tables and approximations we use notation typified by x = 0 ( .05 ) 1 , 8D or 8S. …
    18: Bibliography L
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • Y. L. Luke (1968) Approximations for elliptic integrals. Math. Comp. 22 (103), pp. 627–634.
  • Y. L. Luke (1970) Further approximations for elliptic integrals. Math. Comp. 24 (109), pp. 191–198.
  • 19: 8 Incomplete Gamma and Related
    Functions
    20: 28 Mathieu Functions and Hill’s Equation