About the Project

isolated%20essential

AdvancedHelp

(0.001 seconds)

11—20 of 118 matching pages

11: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 12: 23 Weierstrass Elliptic and Modular
    Functions
    13: 18.39 Applications in the Physical Sciences
    Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
    See accompanying text
    Figure 18.39.2: Coulomb–Pollaczek weight functions, x [ 1 , 1 ] , (18.39.50) for s = 10 , l = 0 , and Z = ± 1 . For Z = + 1 the weight function, red curve, has an essential singularity at x = 1 , as all derivatives vanish as x 1 + ; the green curve is 1 x w CP ( y ) d y , to be compared with its histogram approximation in §18.40(ii). For Z = 1 the weight function, blue curve, is non-zero at x = 1 , but this point is also an essential singularity as the discrete parts of the weight function of (18.39.51) accumulate as k , x k 1 . Magnify
    The Schrödinger operator essential singularity, seen in the accumulation of discrete eigenvalues for the attractive Coulomb problem, is mirrored in the accumulation of jumps in the discrete Pollaczek–Stieltjes measure as x 1 . …
    14: 19.36 Methods of Computation
    19.36.2 1 3 14 E 2 + 1 6 E 3 + 9 88 E 2 2 3 22 E 4 9 52 E 2 E 3 + 3 26 E 5 1 16 E 2 3 + 3 40 E 3 2 + 3 20 E 2 E 4 + 45 272 E 2 2 E 3 9 68 ( E 3 E 4 + E 2 E 5 ) .
    All cases of R F , R C , R J , and R D are computed by essentially the same procedure (after transforming Cauchy principal values by means of (19.20.14) and (19.2.20)). … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
    15: Notices
    The DLMF wishes to provide users of special functions with essential reference information related to the use and application of special functions in research, development, and education. …
    16: 36 Integrals with Coalescing Saddles
    17: Gergő Nemes
    As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    18: Wolter Groenevelt
    As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    19: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 20: 27.15 Chinese Remainder Theorem
    Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …