About the Project

incomplete

AdvancedHelp

(0.001 seconds)

11—20 of 90 matching pages

11: 8.8 Recurrence Relations and Derivatives
§8.8 Recurrence Relations and Derivatives
8.8.1 γ ( a + 1 , z ) = a γ ( a , z ) z a e z ,
8.8.2 Γ ( a + 1 , z ) = a Γ ( a , z ) + z a e z .
If w ( a , z ) = γ ( a , z ) or Γ ( a , z ) , then …
8.8.4 z γ ( a + 1 , z ) = γ ( a , z ) e z Γ ( a + 1 ) .
12: 8.7 Series Expansions
§8.7 Series Expansions
8.7.1 γ ( a , z ) = e z k = 0 z k Γ ( a + k + 1 ) = 1 Γ ( a ) k = 0 ( z ) k k ! ( a + k ) .
8.7.2 γ ( a , x + y ) γ ( a , x ) = Γ ( a , x ) Γ ( a , x + y ) = e x x a 1 n = 0 ( 1 a ) n ( x ) n ( 1 e y e n ( y ) ) , | y | < | x | .
8.7.5 γ ( a , z ) = e 1 2 z n = 0 ( 1 a ) n Γ ( n + a + 1 ) ( 2 n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) .
For an expansion for γ ( a , i x ) in series of Bessel functions J n ( x ) that converges rapidly when a > 0 and x ( 0 ) is small or moderate in magnitude see Barakat (1961).
13: 8.4 Special Values
§8.4 Special Values
8.4.2 γ ( a , 0 ) = 1 Γ ( a + 1 ) ,
8.4.5 Γ ( 1 , z ) = e z ,
8.4.9 P ( n + 1 , z ) = 1 e z e n ( z ) ,
8.4.12 γ ( n , z ) = z n ,
14: 8.5 Confluent Hypergeometric Representations
§8.5 Confluent Hypergeometric Representations
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
15: 8.28 Software
§8.28(ii) Incomplete Gamma Functions for Real Argument and Parameter
§8.28(iii) Incomplete Gamma Functions for Complex Argument and Parameter
§8.28(iv) Incomplete Beta Functions for Real Argument and Parameters
§8.28(v) Incomplete Beta Functions for Complex Argument and Parameters
16: 8 Incomplete Gamma and Related
Functions
Chapter 8 Incomplete Gamma and Related Functions
17: 8.25 Methods of Computation
See Allasia and Besenghi (1987b) for the numerical computation of Γ ( a , z ) from (8.6.4) by means of the trapezoidal rule. … DiDonato and Morris (1986) describes an algorithm for computing P ( a , x ) and Q ( a , x ) for a 0 , x 0 , and a + x 0 from the uniform expansions in §8.12. …A numerical inversion procedure is also given for calculating the value of x (with 10S accuracy), when a and P ( a , x ) are specified, based on Newton’s rule (§3.8(ii)). … The computation of γ ( a , z ) and Γ ( a , z ) by means of continued fractions is described in Jones and Thron (1985) and Gautschi (1979b, §§4.3, 5). … Expansions involving incomplete gamma functions often require the generation of sequences P ( a + n , x ) , Q ( a + n , x ) , or γ ( a + n , x ) for fixed a and n = 0 , 1 , 2 , . …
18: 8.9 Continued Fractions
§8.9 Continued Fractions
8.9.1 Γ ( a + 1 ) e z γ ( a , z ) = 1 1 z a + 1 + z a + 2 ( a + 1 ) z a + 3 + 2 z a + 4 ( a + 2 ) z a + 5 + 3 z a + 6 , a 1 , 2 , ,
8.9.2 z a e z Γ ( a , z ) = z 1 1 + ( 1 a ) z 1 1 + z 1 1 + ( 2 a ) z 1 1 + 2 z 1 1 + ( 3 a ) z 1 1 + 3 z 1 1 + , | ph z | < π .
19: 8.26 Tables
§8.26(ii) Incomplete Gamma Functions
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Pagurova (1963) tabulates P ( a , x ) and Q ( a , x ) (with different notation) for a = 0 ( .05 ) 3 , x = 0 ( .05 ) 1 to 7D.

  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • §8.26(iii) Incomplete Beta Functions
    20: 6.11 Relations to Other Functions
    Incomplete Gamma Function
    6.11.1 E 1 ( z ) = Γ ( 0 , z ) .