About the Project

hypergeometric functions

AdvancedHelp

(0.015 seconds)

31—40 of 222 matching pages

31: 13.6 Relations to Other Functions
§13.6(v) Orthogonal Polynomials
Hermite Polynomials
Laguerre Polynomials
Charlier Polynomials
§13.6(vi) Generalized Hypergeometric Functions
32: 13.18 Relations to Other Functions
§13.18(ii) Incomplete Gamma Functions
§13.18(iv) Parabolic Cylinder Functions
§13.18(v) Orthogonal Polynomials
Hermite Polynomials
Laguerre Polynomials
33: 8.5 Confluent Hypergeometric Representations
§8.5 Confluent Hypergeometric Representations
For the confluent hypergeometric functions M , 𝐌 , U , and the Whittaker functions M κ , μ and W κ , μ , see §§13.2(i) and 13.14(i). …
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.5 Γ ( a , z ) = e 1 2 z z 1 2 a 1 2 W 1 2 a 1 2 , 1 2 a ( z ) .
34: 15.9 Relations to Other Functions
§15.9(i) Orthogonal Polynomials
Jacobi
Legendre
Meixner
§15.9(ii) Jacobi Function
35: 16.6 Transformations of Variable
§16.6 Transformations of Variable
Quadratic
Cubic
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
36: 16.4 Argument Unity
Watson’s Sum
Denote, formally, the bilateral hypergeometric function
37: 10.39 Relations to Other Functions
Confluent Hypergeometric Functions
10.39.7 I ν ( z ) = ( 2 z ) 1 2 M 0 , ν ( 2 z ) 2 2 ν Γ ( ν + 1 ) , 2 ν 1 , 2 , 3 , ,
For the functions M , U , M 0 , ν , and W 0 , ν see §§13.2(i) and 13.14(i).
Generalized Hypergeometric Functions and Hypergeometric Function
For the functions F 1 0 and 𝐅 see (16.2.1) and §15.2(i).
38: 12.18 Methods of Computation
Because PCFs are special cases of confluent hypergeometric functions, the methods of computation described in §13.29 are applicable to PCFs. …
39: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
§17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
Euler’s Second Sum
Euler’s First Sum
Cauchy’s Sum
40: 13.2 Definitions and Basic Properties
13.2.34 𝒲 { 𝐌 ( a , b , z ) , U ( a , b , z ) } = z b e z / Γ ( a ) ,
13.2.35 𝒲 { 𝐌 ( a , b , z ) , e z U ( b a , b , e ± π i z ) } = e b π i z b e z / Γ ( b a ) ,
13.2.36 𝒲 { z 1 b 𝐌 ( a b + 1 , 2 b , z ) , U ( a , b , z ) } = z b e z / Γ ( a b + 1 ) ,
Kummer’s Transformations