About the Project

hypergeometric%0Afunction

AdvancedHelp

(0.003 seconds)

11—20 of 754 matching pages

11: 8.5 Confluent Hypergeometric Representations
§8.5 Confluent Hypergeometric Representations
For the confluent hypergeometric functions M , 𝐌 , U , and the Whittaker functions M κ , μ and W κ , μ , see §§13.2(i) and 13.14(i).
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
12: 15.15 Sums
§15.15 Sums
15.15.1 𝐅 ( a , b c ; 1 z ) = ( 1 z 0 z ) a s = 0 ( a ) s s ! 𝐅 ( s , b c ; 1 z 0 ) ( 1 z z 0 ) s .
Here z 0 ( 0 ) is an arbitrary complex constant and the expansion converges when | z z 0 | > max ( | z 0 | , | z 0 1 | ) . … For compendia of finite sums and infinite series involving hypergeometric functions see Prudnikov et al. (1990, §§5.3 and 6.7) and Hansen (1975).
13: 15.5 Derivatives and Contiguous Functions
§15.5(i) Differentiation Formulas
§15.5(ii) Contiguous Functions
The six functions F ( a ± 1 , b ; c ; z ) , F ( a , b ± 1 ; c ; z ) , F ( a , b ; c ± 1 ; z ) are said to be contiguous to F ( a , b ; c ; z ) . … An equivalent equation to the hypergeometric differential equation (15.10.1) is …
14: 13.15 Recurrence Relations and Derivatives
13.15.1 ( κ μ 1 2 ) M κ 1 , μ ( z ) + ( z 2 κ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) M κ + 1 , μ ( z ) = 0 ,
13.15.2 2 μ ( 1 + 2 μ ) z M κ 1 2 , μ 1 2 ( z ) ( z + 2 μ ) ( 1 + 2 μ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) z M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
13.15.3 ( κ μ 1 2 ) M κ 1 2 , μ + 1 2 ( z ) + ( 1 + 2 μ ) z M κ , μ ( z ) ( κ + μ + 1 2 ) M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
13.15.4 2 μ M κ 1 2 , μ 1 2 ( z ) 2 μ M κ + 1 2 , μ 1 2 ( z ) z M κ , μ ( z ) = 0 ,
13.15.5 2 μ ( 1 + 2 μ ) M κ , μ ( z ) 2 μ ( 1 + 2 μ ) z M κ 1 2 , μ 1 2 ( z ) ( κ μ 1 2 ) z M κ 1 2 , μ + 1 2 ( z ) = 0 ,
15: 13.18 Relations to Other Functions
§13.18(ii) Incomplete Gamma Functions
§13.18(iv) Parabolic Cylinder Functions
§13.18(v) Orthogonal Polynomials
Hermite Polynomials
Laguerre Polynomials
16: 13.3 Recurrence Relations and Derivatives
13.3.7 U ( a 1 , b , z ) + ( b 2 a z ) U ( a , b , z ) + a ( a b + 1 ) U ( a + 1 , b , z ) = 0 ,
13.3.8 ( b a 1 ) U ( a , b 1 , z ) + ( 1 b z ) U ( a , b , z ) + z U ( a , b + 1 , z ) = 0 ,
13.3.9 U ( a , b , z ) a U ( a + 1 , b , z ) U ( a , b 1 , z ) = 0 ,
13.3.10 ( b a ) U ( a , b , z ) + U ( a 1 , b , z ) z U ( a , b + 1 , z ) = 0 ,
13.3.11 ( a + z ) U ( a , b , z ) z U ( a , b + 1 , z ) + a ( b a 1 ) U ( a + 1 , b , z ) = 0 ,
17: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
§17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
Euler’s Second Sum
Euler’s First Sum
Cauchy’s Sum
18: 13.14 Definitions and Basic Properties
In general M κ , μ ( z ) and W κ , μ ( z ) are many-valued functions of z with branch points at z = 0 and z = . … Although M κ , μ ( z ) does not exist when 2 μ = 1 , 2 , 3 , , many formulas containing M κ , μ ( z ) continue to apply in their limiting form. … Except when z = 0 , each branch of the functions M κ , μ ( z ) / Γ ( 2 μ + 1 ) and W κ , μ ( z ) is entire in κ and μ . Also, unless specified otherwise M κ , μ ( z ) and W κ , μ ( z ) are assumed to have their principal values. … For W κ , μ ( z ) with μ < 0 use (13.14.31). …
19: 15.3 Graphics
§15.3(i) Graphs
See accompanying text
Figure 15.3.2: F ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
See accompanying text
Figure 15.3.3: F ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
See accompanying text
Figure 15.3.5: F ( 4 3 , 9 16 ; 14 5 ; x + i y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
See accompanying text
Figure 15.3.7: | 𝐅 ( 3 , 3 5 ; u + i v ; 1 2 ) | , 6 u 2 , 2 v 2 . Magnify 3D Help
20: 16.23 Mathematical Applications
§16.23 Mathematical Applications
These equations are frequently solvable in terms of generalized hypergeometric functions, and the monodromy of generalized hypergeometric functions plays an important role in describing properties of the solutions. …
§16.23(ii) Random Graphs
§16.23(iv) Combinatorics and Number Theory