About the Project

hyperbolic sine function

AdvancedHelp

(0.018 seconds)

1—10 of 110 matching pages

1: 4.35 Identities
4.35.9 tanh u ± tanh v = sinh ( u ± v ) cosh u cosh v ,
4.35.11 cosh 2 z sinh 2 z = 1 ,
4.35.20 sinh z 2 = ( cosh z 1 2 ) 1 / 2 ,
4.35.26 sinh ( 2 z ) = 2 sinh z cosh z = 2 tanh z 1 tanh 2 z ,
4.35.34 sinh z = sinh x cos y + i cosh x sin y ,
2: 4.1 Special Notation
k , m , n integers.
; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
3: 4.32 Inequalities
4.32.1 cosh x ( sinh x x ) 3 ,
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.3 | cosh x cosh y | | x y | sinh x sinh y , x > 0 , y > 0 ,
4: 4.28 Definitions and Periodicity
4.28.1 sinh z = e z e z 2 ,
4.28.3 cosh z ± sinh z = e ± z ,
4.28.4 tanh z = sinh z cosh z ,
4.28.5 csch z = 1 sinh z ,
The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . …
5: 4.34 Derivatives and Differential Equations
4.34.1 d d z sinh z = cosh z ,
4.34.2 d d z cosh z = sinh z ,
4.34.12 w = ( 1 / a ) sinh ( a z + c ) ,
6: 4.31 Special Values and Limits
4.31.1 lim z 0 sinh z z = 1 ,
7: 4.40 Integrals
4.40.1 sinh x d x = cosh x ,
4.40.2 cosh x d x = sinh x ,
4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
4.40.14 arccsch x d x = x arccsch x + arcsinh x , 0 < x < ,
8: 22.10 Maclaurin Series
22.10.7 sn ( z , k ) = tanh z k 2 4 ( z sinh z cosh z ) sech 2 z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
22.10.9 dn ( z , k ) = sech z + k 2 4 ( z + sinh z cosh z ) tanh z sech z + O ( k 4 ) .
9: 14.25 Integral Representations
14.25.1 P ν μ ( z ) = ( z 2 1 ) μ / 2 2 ν Γ ( μ ν ) Γ ( ν + 1 ) 0 ( sinh t ) 2 ν + 1 ( z + cosh t ) ν + μ + 1 d t , μ > ν > 1 ,
14.25.2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 ,
10: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.1: sinh x and cosh x . Magnify
§4.29(ii) Complex Arguments
The conformal mapping w = sinh z is obtainable from Figure 4.15.7 by rotating both the w -plane and the z -plane through an angle 1 2 π , compare (4.28.8). The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …