About the Project

generalizations

AdvancedHelp

(0.002 seconds)

21—30 of 394 matching pages

21: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
§10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
The function ϕ ( ρ , β ; z ) is defined by
10.46.1 ϕ ( ρ , β ; z ) = k = 0 z k k ! Γ ( ρ k + β ) , ρ > 1 .
For asymptotic expansions of ϕ ( ρ , β ; z ) as z in various sectors of the complex z -plane for fixed real values of ρ and fixed real or complex values of β , see Wright (1935) when ρ > 0 , and Wright (1940b) when 1 < ρ < 0 . … The Laplace transform of ϕ ( ρ , β ; z ) can be expressed in terms of the Mittag-Leffler function: …
22: 8.1 Special Notation
Unless otherwise indicated, primes denote derivatives with respect to the argument. The functions treated in this chapter are the incomplete gamma functions γ ( a , z ) , Γ ( a , z ) , γ ( a , z ) , P ( a , z ) , and Q ( a , z ) ; the incomplete beta functions B x ( a , b ) and I x ( a , b ) ; the generalized exponential integral E p ( z ) ; the generalized sine and cosine integrals si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) . Alternative notations include: Prym’s functions P z ( a ) = γ ( a , z ) , Q z ( a ) = Γ ( a , z ) , Nielsen (1906a, pp. 25–26), Batchelder (1967, p. 63); ( a , z ) ! = γ ( a + 1 , z ) , [ a , z ] ! = Γ ( a + 1 , z ) , Dingle (1973); B ( a , b , x ) = B x ( a , b ) , I ( a , b , x ) = I x ( a , b ) , Magnus et al. (1966); Si ( a , x ) Si ( 1 a , x ) , Ci ( a , x ) Ci ( 1 a , x ) , Luke (1975).
23: 16.7 Relations to Other Functions
§16.7 Relations to Other Functions
24: 16.25 Methods of Computation
§16.25 Methods of Computation
25: 16 Generalized Hypergeometric Functions & Meijer G-Function
Chapter 16 Generalized Hypergeometric Functions and Meijer G -Function
26: 35.10 Methods of Computation
§35.10 Methods of Computation
See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). …
27: 16.6 Transformations of Variable
§16.6 Transformations of Variable
Quadratic
16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
Cubic
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
28: 30.12 Generalized and Coulomb Spheroidal Functions
§30.12 Generalized and Coulomb Spheroidal Functions
Generalized spheroidal wave functions and Coulomb spheroidal functions are solutions of the differential equation … Another generalization is provided by the differential equation …
29: 6 Exponential, Logarithmic, Sine, and
Cosine Integrals
30: 7 Error Functions, Dawson’s and Fresnel Integrals