About the Project

functions f(?,?;r),h(?,?;r)

AdvancedHelp

(0.007 seconds)

1—10 of 84 matching pages

1: 33.15 Graphics
§33.15(i) Line Graphs of the Coulomb Functions f ( ϵ , ; r ) and h ( ϵ , ; r )
§33.15(ii) Surfaces of the Coulomb Functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r )
2: 33.18 Limiting Forms for Large
§33.18 Limiting Forms for Large
As with ϵ and r ( 0 ) fixed,
f ( ϵ , ; r ) ( 2 r ) + 1 ( 2 + 1 ) ! ,
h ( ϵ , ; r ) ( 2 ) ! π ( 2 r ) .
3: 33.14 Definitions and Basic Properties
§33.14(ii) Regular Solution f ( ϵ , ; r )
§33.14(iii) Irregular Solution h ( ϵ , ; r )
4: 33.1 Special Notation
The main functions treated in this chapter are first the Coulomb radial functions F ( η , ρ ) , G ( η , ρ ) , H ± ( η , ρ ) (Sommerfeld (1928)), which are used in the case of repulsive Coulomb interactions, and secondly the functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , c ( ϵ , ; r ) (Seaton (1982, 2002a)), which are used in the case of attractive Coulomb interactions. …
5: 33.20 Expansions for Small | ϵ |
§33.20(i) Case ϵ = 0
where … where A ( ϵ , ) is given by (33.14.11), (33.14.12), and …
§33.20(iv) Uniform Asymptotic Expansions
For a comprehensive collection of asymptotic expansions that cover f ( ϵ , ; r ) and h ( ϵ , ; r ) as ϵ 0 ± and are uniform in r , including unbounded values, see Curtis (1964a, §7). …
6: 33.17 Recurrence Relations and Derivatives
§33.17 Recurrence Relations and Derivatives
33.17.1 ( + 1 ) r f ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) f ( ϵ , ; r ) + ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) = 0 ,
33.17.2 ( + 1 ) ( 1 + 2 ϵ ) r h ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) h ( ϵ , ; r ) + r h ( ϵ , + 1 ; r ) = 0 ,
33.17.3 ( + 1 ) r f ( ϵ , ; r ) = ( ( + 1 ) 2 r ) f ( ϵ , ; r ) ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) ,
33.17.4 ( + 1 ) r h ( ϵ , ; r ) = ( ( + 1 ) 2 r ) h ( ϵ , ; r ) r h ( ϵ , + 1 ; r ) .
7: 33.19 Power-Series Expansions in r
33.19.3 2 π h ( ϵ , ; r ) = k = 0 2 ( 2 k ) ! γ k k ! ( 2 r ) k k = 0 δ k r k + + 1 A ( ϵ , ) ( 2 ln | 2 r / κ | + ψ ( + 1 + κ ) + ψ ( + κ ) ) f ( ϵ , ; r ) , r 0 .
8: 24.17 Mathematical Applications
24.17.1 j = a n 1 ( 1 ) j f ( j + h ) = 1 2 k = 0 m 1 E k ( h ) k ! ( ( 1 ) n 1 f ( k ) ( n ) + ( 1 ) a f ( k ) ( a ) ) + R m ( n ) ,
9: 33.21 Asymptotic Approximations for Large | r |
§33.21(i) Limiting Forms
We indicate here how to obtain the limiting forms of f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r ) as r ± , with ϵ and fixed, in the following cases: …
  • (b)

    When r ± with ϵ < 0 , Equations (33.16.10)–(33.16.13) are combined with

    33.21.1
    ζ ( ν , r ) e r / ν ( 2 r / ν ) ν ,
    ξ ( ν , r ) e r / ν ( 2 r / ν ) ν , r ,
    33.21.2
    ζ ( ν , r ) e r / ν ( 2 r / ν ) ν ,
    ξ ( ν , r ) e r / ν ( 2 r / ν ) ν , r .

    Corresponding approximations for s ( ϵ , ; r ) and c ( ϵ , ; r ) as r can be obtained via (33.16.17), and as r via (33.16.18).

  • §33.21(ii) Asymptotic Expansions
    For asymptotic expansions of f ( ϵ , ; r ) and h ( ϵ , ; r ) as r ± with ϵ and fixed, see Curtis (1964a, §6).
    10: How to Cite
  • [DLMF]

    NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.2.2 of 2024-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, RF. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.