About the Project

for%20modified%20Bessel%20functions

AdvancedHelp

(0.009 seconds)

11—17 of 17 matching pages

11: Bibliography B
  • C. B. Balogh (1967) Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, pp. 1315–1323.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • K. H. Burrell (1974) Algorithm 484: Evaluation of the modified Bessel functions K0(Z) and K1(Z) for complex arguments. Comm. ACM 17 (9), pp. 524–526.
  • 12: Bibliography R
  • Ju. M. Rappoport (1979) Tablitsy modifitsirovannykh funktsii Besselya K 1 2 + i β ( x ) . “Nauka”, Moscow (Russian).
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 13: Bibliography
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • D. E. Amos (1974) Computation of modified Bessel functions and their ratios. Math. Comp. 28 (125), pp. 239–251.
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 14: Bibliography C
  • J. B. Campbell (1980) On Temme’s algorithm for the modified Bessel function of the third kind. ACM Trans. Math. Software 6 (4), pp. 581–586.
  • R. Cicchetti and A. Faraone (2004) Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics. IEEE Trans. Antennas and Propagation 52 (12), pp. 3373–3389.
  • W. J. Cody (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Trans. Math. Software 9 (2), pp. 242–245.
  • H. S. Cohl (2010) Derivatives with respect to the degree and order of associated Legendre functions for | z | > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21 (7-8), pp. 581–588.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 15: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • E. J. Weniger and J. Čížek (1990) Rational approximations for the modified Bessel function of the second kind. Comput. Phys. Comm. 59 (3), pp. 471–493.
  • A. D. Wheelon (1968) Tables of Summable Series and Integrals Involving Bessel Functions. Holden-Day, San Francisco, CA.
  • M. E. Wojcicki (1961) Algorithm 44: Bessel functions computed recursively. Comm. ACM 4 (4), pp. 177–178.
  • E. M. Wright (1935) The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (2) 38, pp. 257–270.
  • 16: Bibliography L
  • A. Laforgia (1986) Inequalities for Bessel functions. J. Comput. Appl. Math. 15 (1), pp. 75–81.
  • A. Laforgia (1991) Bounds for modified Bessel functions. J. Comput. Appl. Math. 34 (3), pp. 263–267.
  • L. J. Landau (2000) Bessel functions: Monotonicity and bounds. J. London Math. Soc. (2) 61 (1), pp. 197–215.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • K. V. Leung and S. S. Ghaderpanah (1979) An application of the finite element approximation method to find the complex zeros of the modified Bessel function K n ( z ) . Math. Comp. 33 (148), pp. 1299–1306.
  • 17: Bibliography V
  • A. L. Van Buren and J. E. Boisvert (2007) Accurate calculation of the modified Mathieu functions of integer order. Quart. Appl. Math. 65 (1), pp. 1–23.
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • M. N. Vrahatis, T. N. Grapsa, O. Ragos, and F. A. Zafiropoulos (1997a) On the localization and computation of zeros of Bessel functions. Z. Angew. Math. Mech. 77 (6), pp. 467–475.
  • M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1997b) The topological degree theory for the localization and computation of complex zeros of Bessel functions. Numer. Funct. Anal. Optim. 18 (1-2), pp. 227–234.