About the Project

for%20confluent%20hypergeometric%20functions

AdvancedHelp

(0.008 seconds)

11—14 of 14 matching pages

11: 18.5 Explicit Representations
§18.5(i) Trigonometric Functions
§18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
For the definitions of F 1 2 , F 1 1 , and F 0 2 see §16.2. …
Laguerre
Hermite
12: Bibliography S
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • G. Shimura (1982) Confluent hypergeometric functions on tube domains. Math. Ann. 260 (3), pp. 269–302.
  • H. Skovgaard (1966) Uniform Asymptotic Expansions of Confluent Hypergeometric Functions and Whittaker Functions. Doctoral dissertation, University of Copenhagen, Vol. 1965, Jul. Gjellerups Forlag, Copenhagen.
  • L. J. Slater (1960) Confluent Hypergeometric Functions. Cambridge University Press, Cambridge-New York.
  • A. D. Smirnov (1960) Tables of Airy Functions and Special Confluent Hypergeometric Functions. Pergamon Press, New York.
  • 13: Bibliography P
  • E. Pairman (1919) Tables of Digamma and Trigamma Functions. In Tracts for Computers, No. 1, K. Pearson (Ed.),
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • R. B. Paris (2013) Exponentially small expansions of the confluent hypergeometric functions. Appl. Math. Sci. (Ruse) 7 (133-136), pp. 6601–6609.
  • W. F. Perger, A. Bhalla, and M. Nardin (1993) A numerical evaluator for the generalized hypergeometric series. Comput. Phys. Comm. 77 (2), pp. 249–254.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • 14: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • J. L. López and P. J. Pagola (2010) The confluent hypergeometric functions M ( a , b ; z ) and U ( a , b ; z ) for large b and z . J. Comput. Appl. Math. 233 (6), pp. 1570–1576.
  • J. L. López and E. Pérez Sinusía (2014) New series expansions for the confluent hypergeometric function M ( a , b , z ) . Appl. Math. Comput. 235, pp. 26–31.
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.