About the Project

extremal%20properties

AdvancedHelp

(0.001 seconds)

11—20 of 278 matching pages

11: 18.38 Mathematical Applications
The monic Chebyshev polynomial 2 1 n T n ( x ) , n 1 , enjoys the ‘minimax’ property on the interval [ 1 , 1 ] , that is, | 2 1 n T n ( x ) | has the least maximum value among all monic polynomials of degree n . In consequence, expansions of functions that are infinitely differentiable on [ 1 , 1 ] in series of Chebyshev polynomials usually converge extremely rapidly. …
12: Bibliography N
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • G. Nemes (2015c) The resurgence properties of the incomplete gamma function II. Stud. Appl. Math. 135 (1), pp. 86–116.
  • G. Nemes (2016) The resurgence properties of the incomplete gamma function, I. Anal. Appl. (Singap.) 14 (5), pp. 631–677.
  • 13: 18.27 q -Hahn Class
    All these systems of OP’s have orthogonality properties of the form …Some of the systems of OP’s that occur in the classification do not have a unique orthogonality property. … They are defined by their q -hypergeometric representations, followed by their orthogonality properties. … Bounds for the extreme zeros are given in Driver and Jordaan (2013). … Bounds for the extreme zeros are given in Driver and Jordaan (2013). …
    14: 27.2 Functions
    Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    15: Bibliography R
  • S. Ramanujan (1921) Congruence properties of partitions. Math. Z. 9 (1-2), pp. 147–153.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • M. Robnik (1980) An extremum property of the n -dimensional sphere. J. Phys. A 13 (10), pp. L349–L351.
  • 16: 8.17 Incomplete Beta Functions
    §8.17(i) Definitions and Basic Properties
    §8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
    8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
    17: 8 Incomplete Gamma and Related
    Functions
    18: 28 Mathieu Functions and Hill’s Equation
    19: Bibliography G
  • I. M. Gel’fand and G. E. Shilov (1964) Generalized Functions. Vol. 1: Properties and Operations. Academic Press, New York.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • B. Grammaticos, A. Ramani, and V. Papageorgiou (1991) Do integrable mappings have the Painlevé property?. Phys. Rev. Lett. 67 (14), pp. 1825–1828.
  • P. Groeneboom and D. R. Truax (2000) A monotonicity property of the power function of multivariate tests. Indag. Math. (N.S.) 11 (2), pp. 209–218.
  • 20: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.