About the Project

error%20and%20related%20functions

AdvancedHelp

(0.007 seconds)

11—15 of 15 matching pages

11: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. Khare, A. Lakshminarayan, and U. Sukhatme (2003) Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys. 44 (4), pp. 1822–1841.
  • S. Koizumi (1976) Theta relations and projective normality of Abelian varieties. Amer. J. Math. 98 (4), pp. 865–889.
  • H. Kuki (1972) Algorithm 421. Complex gamma function with error control. Comm. ACM 15 (4), pp. 271–272.
  • 12: Bibliography G
  • W. Gautschi (1969) Algorithm 363: Complex error function. Comm. ACM 12 (11), pp. 635.
  • W. Gautschi (1961) Recursive computation of the repeated integrals of the error function. Math. Comp. 15 (75), pp. 227–232.
  • W. Gautschi (1970) Efficient computation of the complex error function. SIAM J. Numer. Anal. 7 (1), pp. 187–198.
  • M. Geller and E. W. Ng (1971) A table of integrals of the error function. II. Additions and corrections. J. Res. Nat. Bur. Standards Sect. B 75B, pp. 149–163.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • 13: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • V. S. Adamchik and H. M. Srivastava (1998) Some series of the zeta and related functions. Analysis (Munich) 18 (2), pp. 131–144.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • 14: Bibliography C
  • L. Carlitz (1963) The inverse of the error function. Pacific J. Math. 13 (2), pp. 459–470.
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • W. J. Cody (1969) Rational Chebyshev approximations for the error function. Math. Comp. 23 (107), pp. 631–637.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 15: 19.36 Methods of Computation
    where the elementary symmetric functions E s are defined by (19.19.4). … Legendre’s integrals can be computed from symmetric integrals by using the relations in §19.25(i). … If the iteration of (19.36.6) and (19.36.12) is stopped when c s < r t s ( M and T being approximated by a s and t s , and the infinite series being truncated), then the relative error in R F and R G is less than r if we neglect terms of order r 2 . …
    §19.36(iii) Via Theta Functions
    For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …