About the Project

discrete%20analog

AdvancedHelp

(0.001 seconds)

11—20 of 172 matching pages

11: 20 Theta Functions
Chapter 20 Theta Functions
12: 28.27 Addition Theorems
They are analogous to the addition theorems for Bessel functions (§10.23(ii)) and modified Bessel functions (§10.44(ii)). …
13: Bibliography G
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • GAP (website) The GAP Group, Centre for Interdisciplinary Research in Computational Algebra, University of St. Andrews, United Kingdom.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 14: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • L. J. Billera, C. Greene, R. Simion, and R. P. Stanley (Eds.) (1996) Formal Power Series and Algebraic Combinatorics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 24, American Mathematical Society, Providence, RI.
  • R. Blackmore and B. Shizgal (1985) Discrete ordinate solution of Fokker-Planck equations with non-linear coefficients. Phys. Rev. A 31 (3), pp. 1855–1868.
  • R. Blackmore, U. Weinert, and B. Shizgal (1986) Discrete ordinate solution of a Fokker-Planck equation in laser physics. Transport Theory Statist. Phys. 15 (1-2), pp. 181–210.
  • V. Britanak, P. C. Yip, and K. R. Rao (2007) Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations. Elsevier/Academic Press, Amsterdam.
  • 15: 18.27 q -Hahn Class
    §18.27(vii) Discrete q -Hermite I and II Polynomials
    Discrete q -Hermite I
    Discrete q -Hermite II
    18.27.24 = ( h ~ n ( c q ; q ) h ~ m ( c q ; q ) + h ~ n ( c q ; q ) h ~ m ( c q ; q ) ) q ( c 2 q 2 ; q 2 ) = 2 ( q 2 , c 2 q , c 2 q ; q 2 ) ( q , c 2 , c 2 q 2 ; q 2 ) ( q ; q ) n q n 2 δ n , m , c > 0 .
    For discrete q -Hermite II polynomials the measure is not uniquely determined. …
    16: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, and D. R. Shier (Eds.) (2000) Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton, FL.
  • 17: Sidebar 5.SB1: Gamma & Digamma Phase Plots
    This pattern is analogous to one that would be seen in fluid flow generated by a semi-infinite line of vortices. … The fluid flow analogy in this case involves a line of vortices of alternating sign of circulation, resulting in a near cancellation of flow far from the real axis.
    18: Bibliography Y
  • H. A. Yamani and W. P. Reinhardt (1975) L -squared discretizations of the continuum: Radial kinetic energy and the Coulomb Hamiltonian. Phys. Rev. A 11 (4), pp. 1144–1156.
  • 19: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • 20: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.