About the Project

contiguous%20relations

AdvancedHelp

(0.002 seconds)

11—20 of 378 matching pages

11: William P. Reinhardt
Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    12: 17.6 ϕ 1 2 Function
    Related formulas are (17.7.3), (17.8.8) and …
    §17.6(iii) Contiguous Relations
    Heine’s Contiguous Relations
    13: 18.2 General Orthogonal Polynomials
    §18.2(iii) Standardization and Related Constants
    §18.2(iv) Recurrence Relations
    the monic recurrence relations (18.2.8) and (18.2.10) take the form … are OP’s with orthogonality relation …Between the systems { p n ( x ) } and { q n ( x ) } there are the contiguous relations
    14: 20 Theta Functions
    Chapter 20 Theta Functions
    15: 25.12 Polylogarithms
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    The special case z = 1 is the Riemann zeta function: ζ ( s ) = Li s ( 1 ) . … Further properties include …and … In terms of polylogarithms …
    16: 26.5 Lattice Paths: Catalan Numbers
    §26.5(i) Definitions
    Table 26.5.1: Catalan numbers.
    n C ( n ) n C ( n ) n C ( n )
    6 132 13 7 42900 20 65641 20420
    §26.5(iii) Recurrence Relations
    17: 26.3 Lattice Paths: Binomial Coefficients
    §26.3(i) Definitions
    Table 26.3.1: Binomial coefficients ( m n ) .
    m n
    6 1 6 15 20 15 6 1
    Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
    m n
    3 1 4 10 20 35 56 84 120 165
    §26.3(iii) Recurrence Relations
    18: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    §26.4(i) Definitions
    Table 26.4.1: Multinomials and partitions.
    n m λ M 1 M 2 M 3
    5 2 2 1 , 3 1 10 20 10
    5 3 1 2 , 3 1 20 20 10
    §26.4(iii) Recurrence Relation
    19: Tom M. Apostol
    Apostol was born on August 20, 1923. …
  • 20: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).