About the Project

associated Legendre functions

AdvancedHelp

(0.011 seconds)

21—30 of 66 matching pages

21: Howard S. Cohl
Cohl has published papers in orthogonal polynomials and special functions, and is particularly interested in fundamental solutions of linear partial differential equations on Riemannian manifolds, associated Legendre functions, generalized and basic hypergeometric functions, eigenfunction expansions of fundamental solutions in separable coordinate systems for linear partial differential equations, orthogonal polynomial generating function and generalized expansions, and q -series. …
22: 14.19 Toroidal (or Ring) Functions
Most required properties of toroidal functions come directly from the results for P ν μ ( x ) and 𝑸 ν μ ( x ) . …
14.19.5 𝑸 n 1 2 m ( cosh ξ ) = Γ ( n + 1 2 ) Γ ( n + m + 1 2 ) Γ ( n m + 1 2 ) 0 cosh ( m t ) ( cosh ξ + cosh t sinh ξ ) n + ( 1 / 2 ) d t , m < n + 1 2 .
14.19.6 𝑸 1 2 μ ( cosh ξ ) + 2 n = 1 Γ ( μ + n + 1 2 ) Γ ( μ + 1 2 ) 𝑸 n 1 2 μ ( cosh ξ ) cos ( n ϕ ) = ( 1 2 π ) 1 / 2 ( sinh ξ ) μ ( cosh ξ cos ϕ ) μ + ( 1 / 2 ) , μ > 1 2 .
23: 14.18 Sums
§14.18 Sums
§14.18(ii) Addition Theorems
Dougall’s Expansion
24: 14.9 Connection Formulas
§14.9(iii) Connections Between P ν ± μ ( x ) , P ν 1 ± μ ( x ) , 𝑸 ν ± μ ( x ) , 𝑸 ν 1 μ ( x )
14.9.15 2 sin ( μ π ) π 𝑸 ν μ ( x ) = P ν μ ( x ) Γ ( ν + μ + 1 ) P ν μ ( x ) Γ ( ν μ + 1 ) .
§14.9(iv) Whipple’s Formula
14.9.16 𝑸 ν μ ( x ) = ( 1 2 π ) 1 / 2 ( x 2 1 ) 1 / 4 P μ ( 1 / 2 ) ν ( 1 / 2 ) ( x ( x 2 1 ) 1 / 2 ) .
14.9.17 P ν μ ( x ) = ( 2 / π ) 1 / 2 ( x 2 1 ) 1 / 4 𝑸 μ ( 1 / 2 ) ν + ( 1 / 2 ) ( x ( x 2 1 ) 1 / 2 ) .
25: 14.23 Values on the Cut
§14.23 Values on the Cut
14.23.3 𝑸 ν μ ( x ± i 0 ) = e ν π i / 2 π 3 / 2 ( 1 x 2 ) μ / 2 2 ν + 1 ( x 𝐅 ( 1 2 μ 1 2 ν + 1 2 , 1 2 ν + 1 2 μ + 1 ; 3 2 ; x 2 ) Γ ( 1 2 ν 1 2 μ + 1 2 ) Γ ( 1 2 ν + 1 2 μ + 1 2 ) i 𝐅 ( 1 2 μ 1 2 ν , 1 2 ν + 1 2 μ + 1 2 ; 1 2 ; x 2 ) Γ ( 1 2 ν 1 2 μ + 1 ) Γ ( 1 2 ν + 1 2 μ + 1 ) ) .
14.23.6 𝖰 ν μ ( x ) = e μ π i / 2 Γ ( ν + μ + 1 ) 𝑸 ν μ ( x ± i 0 ) ± 1 2 π i e ± μ π i / 2 P ν μ ( x ± i 0 ) .
26: 14.2 Differential Equations
§14.2(ii) Associated Legendre Equation
Ferrers functions and the associated Legendre functions are related to the Legendre functions by the equations 𝖯 ν 0 ( x ) = 𝖯 ν ( x ) , 𝖰 ν 0 ( x ) = 𝖰 ν ( x ) , P ν 0 ( x ) = P ν ( x ) , Q ν 0 ( x ) = Q ν ( x ) , 𝑸 ν 0 ( x ) = 𝑸 ν ( x ) = Q ν ( x ) / Γ ( ν + 1 ) . …
14.2.8 𝒲 { P ν μ ( x ) , 𝑸 ν μ ( x ) } = 1 Γ ( ν + μ + 1 ) ( x 2 1 ) ,
14.2.11 P ν + 1 μ ( x ) Q ν μ ( x ) P ν μ ( x ) Q ν + 1 μ ( x ) = e μ π i Γ ( ν + μ + 1 ) Γ ( ν μ + 2 ) .
27: 14.17 Integrals
§14.17(ii) Barnes’ Integral
§14.17(iii) Orthogonality Properties
Orthogonality relations for the associated Legendre functions of imaginary order are given in Bielski (2013).
§14.17(iv) Definite Integrals of Products
§14.17(v) Laplace Transforms
28: 16.18 Special Cases
As a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
29: 15.9 Relations to Other Functions
§15.9(iv) Associated Legendre Functions; Ferrers Functions
Any hypergeometric function for which a quadratic transformation exists can be expressed in terms of associated Legendre functions or Ferrers functions. … The following formulas apply with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. …
15.9.17 𝐅 ( a , a + 1 2 c ; z ) = 2 c 1 z ( 1 c ) / 2 ( 1 z ) a + ( ( c 1 ) / 2 ) P 2 a c 1 c ( 1 1 z ) , | ph z | < π and | ph ( 1 z ) | < π .
30: 30.6 Functions of Complex Argument
Relations to Associated Legendre Functions