About the Project

as functions of parameters

AdvancedHelp

(0.011 seconds)

31—40 of 376 matching pages

31: 8.10 Inequalities
8.10.1 x 1 a e x Γ ( a , x ) 1 , x > 0 , 0 < a 1 ,
8.10.2 γ ( a , x ) x a 1 a ( 1 e x ) , x > 0 , 0 < a 1 .
8.10.3 x 1 a e x Γ ( a , x ) = 1 + a 1 x ϑ ,
8.10.5 A n < x 1 a e x Γ ( a , x ) < B n , x > 0 , a < 1 ,
8.10.11 ( 1 e α a x ) a P ( a , x ) ( 1 e β a x ) a , x 0 , a > 0 ,
32: 18.3 Definitions
Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
33: 20.7 Identities
20.7.16 θ 1 ( 2 z | 2 τ ) = A θ 1 ( z | τ ) θ 2 ( z | τ ) ,
20.7.19 θ 4 ( 2 z | 2 τ ) = A θ 3 ( z | τ ) θ 4 ( z | τ ) .
§20.7(viii) Transformations of Lattice Parameter
20.7.28 θ 3 ( z | τ + 1 ) = θ 4 ( z | τ ) ,
20.7.29 θ 4 ( z | τ + 1 ) = θ 3 ( z | τ ) .
34: 11.7 Integrals and Sums
11.7.14 0 e a t 𝐇 1 ( t ) d t = 2 π a 2 a π 1 + a 2 ln ( 1 + 1 + a 2 a ) ,
11.7.15 0 e a t 𝐋 0 ( t ) d t = 2 π a 2 1 arcsin ( 1 a ) ,
35: 8.28 Software
§8.28(ii) Incomplete Gamma Functions for Real Argument and Parameter
§8.28(iii) Incomplete Gamma Functions for Complex Argument and Parameter
§8.28(iv) Incomplete Beta Functions for Real Argument and Parameters
§8.28(v) Incomplete Beta Functions for Complex Argument and Parameters
36: 8.8 Recurrence Relations and Derivatives
8.8.3 w ( a + 2 , z ) ( a + 1 + z ) w ( a + 1 , z ) + a z w ( a , z ) = 0 .
8.8.11 P ( a + n , z ) = P ( a , z ) z a e z k = 0 n 1 z k Γ ( a + k + 1 ) ,
8.8.12 Q ( a + n , z ) = Q ( a , z ) + z a e z k = 0 n 1 z k Γ ( a + k + 1 ) .
8.8.15 d n d z n ( z a γ ( a , z ) ) = ( 1 ) n z a n γ ( a + n , z ) ,
8.8.16 d n d z n ( z a Γ ( a , z ) ) = ( 1 ) n z a n Γ ( a + n , z ) ,
37: 30.4 Functions of the First Kind
30.4.1 1 1 ( 𝖯𝗌 n m ( x , γ 2 ) ) 2 d x = 2 2 n + 1 ( n + m ) ! ( n m ) ! ,
30.4.3 𝖯𝗌 n m ( x , γ 2 ) = ( 1 ) n m 𝖯𝗌 n m ( x , γ 2 ) .
30.4.8 c n = ( n + 1 2 ) ( n m ) ! ( n + m ) ! 1 1 f ( t ) 𝖯𝗌 n m ( t , γ 2 ) d t .
30.4.9 lim N 1 1 | f ( x ) n = m N c n 𝖯𝗌 n m ( x , γ 2 ) | 2 d x = 0 .
38: 13.2 Definitions and Basic Properties
Kummer’s Equation
13.2.11 U ( a , n , z ) = z n + 1 U ( a + n + 1 , n + 2 , z ) .
39: 9.13 Generalized Airy Functions
9.13.15 2 π ( 1 2 m ) ( m 1 ) / m csc ( π / m ) A n ( z ) = { U m ( t ) , m  even , V m ( t ) , m  odd ,
9.13.16 π ( 1 2 m ) ( m 2 ) / ( 2 m ) csc ( π / m ) B n ( z ) = { U m ( t ) , m  even , V ¯ m ( t ) , m  odd .
9.13.20 U 1 ( x , α ) = 1 ( α + 2 ) 1 / ( α + 2 ) Γ ( α + 1 α + 2 ) x 1 / 2 J 1 / ( α + 2 ) ( 2 α + 2 x ( α + 2 ) / 2 ) ,
9.13.21 U 2 ( x , α ) = ( α + 2 ) 1 / ( α + 2 ) Γ ( α + 3 α + 2 ) x 1 / 2 J 1 / ( α + 2 ) ( 2 α + 2 x ( α + 2 ) / 2 ) ,
9.13.32 f ( p 3 ) z f ( p 1 ) + ( p 1 ) f ( p ) = 0 .
40: 28.8 Asymptotic Expansions for Large q
§28.8 Asymptotic Expansions for Large q
28.8.12 Q m ( x ) sin x cos 2 x ( 1 2 5 h ( s 2 + 3 ) + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cos 2 x ) ) + .
Barrett’s Expansions
Dunster’s Approximations