About the Project

Vandermonde%20sum

AdvancedHelp

(0.002 seconds)

21—30 of 422 matching pages

21: 20.11 Generalizations and Analogs
§20.11(i) Gauss Sum
For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by
20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
20.11.3 f ( a , b ) = n = a n ( n + 1 ) / 2 b n ( n 1 ) / 2 ,
22: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
Table 26.4.1: Multinomials and partitions.
n m λ M 1 M 2 M 3
5 2 2 1 , 3 1 10 20 10
5 3 1 2 , 3 1 20 20 10
26.4.9 ( x 1 + x 2 + + x k ) n = ( n n 1 , n 2 , , n k ) x 1 n 1 x 2 n 2 x k n k ,
26.4.10 ( n 1 + n 2 + + n m n 1 , n 2 , , n m ) = k = 1 m ( n 1 + n 2 + + n m 1 n 1 , n 2 , , n k 1 , n k 1 , n k + 1 , , n m ) , n 1 , n 2 , , n m 1 .
23: 26.5 Lattice Paths: Catalan Numbers
Table 26.5.1: Catalan numbers.
n C ( n ) n C ( n ) n C ( n )
6 132 13 7 42900 20 65641 20420
26.5.2 n = 0 C ( n ) x n = 1 1 4 x 2 x , | x | < 1 4 .
26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
26.5.5 C ( n + 1 ) = k = 0 n / 2 ( n 2 k ) 2 n 2 k C ( k ) .
24: 3.4 Differentiation
B 2 5 = 1 120 ( 6 10 t 15 t 2 + 20 t 3 5 t 4 ) ,
B 3 6 = 1 720 ( 12 8 t 45 t 2 + 20 t 3 + 15 t 4 6 t 5 ) ,
B 2 6 = 1 60 ( 9 9 t 30 t 2 + 20 t 3 + 5 t 4 3 t 5 ) ,
B 2 6 = 1 60 ( 9 + 9 t 30 t 2 20 t 3 + 5 t 4 + 3 t 5 ) ,
B 3 6 = 1 720 ( 12 + 8 t 45 t 2 20 t 3 + 15 t 4 + 6 t 5 ) .
25: 25.6 Integer Arguments
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.5 ζ ( k + 1 ) = 1 k ! n 1 = 1 n k = 1 1 n 1 n k ( n 1 + + n k ) , k = 1 , 2 , 3 , .
25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
25.6.9 ζ ( 3 ) = 5 2 k = 1 ( 1 ) k 1 k 3 ( 2 k k ) .
25.6.19 ( m + n + 3 2 ) ζ ( 2 m + 2 n + 2 ) = ( k = 1 m + k = 1 n ) ζ ( 2 k ) ζ ( 2 m + 2 n + 2 2 k ) , m 0 , n 0 , m + n 1 .
26: 23.9 Laurent and Other Power Series
23.9.1 c n = ( 2 n 1 ) w 𝕃 { 0 } w 2 n , n = 2 , 3 , 4 , .
23.9.2 ( z ) = 1 z 2 + n = 2 c n z 2 n 2 , 0 < | z | < | z 0 | ,
23.9.3 ζ ( z ) = 1 z n = 2 c n 2 n 1 z 2 n 1 , 0 < | z | < | z 0 | .
c 2 = 1 20 g 2 ,
23.9.5 c n = 3 ( 2 n + 1 ) ( n 3 ) m = 2 n 2 c m c n m , n 4 .
27: 26.14 Permutations: Order Notation
26.14.1 inv ( σ ) = 1 j < k n σ ( j ) > σ ( k ) 1 .
Equivalently, this is the sum over 1 j < n of the number of integers less than σ ( j ) that lie in positions to the right of the j th position: inv ( 35247816 ) = 2 + 3 + 1 + 1 + 2 + 2 + 0 = 11 . The major index is the sum of all positions that mark the first element of a descent:
26.14.2 maj ( σ ) = 1 j < n σ ( j ) > σ ( j + 1 ) j .
26.14.3 σ 𝔖 n q inv ( σ ) = σ 𝔖 n q maj ( σ ) = j = 1 n 1 q j 1 q .
28: 36 Integrals with Coalescing Saddles
29: Gergő Nemes
As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
30: Wolter Groenevelt
As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …